首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5847篇
  免费   771篇
  国内免费   246篇
  6864篇
  2024年   16篇
  2023年   184篇
  2022年   170篇
  2021年   303篇
  2020年   299篇
  2019年   309篇
  2018年   278篇
  2017年   258篇
  2016年   264篇
  2015年   305篇
  2014年   384篇
  2013年   352篇
  2012年   286篇
  2011年   278篇
  2010年   244篇
  2009年   313篇
  2008年   306篇
  2007年   332篇
  2006年   271篇
  2005年   228篇
  2004年   177篇
  2003年   192篇
  2002年   150篇
  2001年   129篇
  2000年   117篇
  1999年   110篇
  1998年   106篇
  1997年   81篇
  1996年   88篇
  1995年   45篇
  1994年   41篇
  1993年   60篇
  1992年   36篇
  1991年   27篇
  1990年   23篇
  1989年   20篇
  1988年   10篇
  1987年   17篇
  1986年   16篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   8篇
  1981年   5篇
  1979年   5篇
  1978年   4篇
  1976年   1篇
  1973年   1篇
排序方式: 共有6864条查询结果,搜索用时 15 毫秒
61.
Current climate change is a major threat to biodiversity. Species unable to adapt or move will face local or global extinction and this is more likely to happen to species with narrow climatic and habitat requirements and limited dispersal abilities, such as amphibians and reptiles. Biodiversity losses are likely to be greatest in global biodiversity hotspots where climate change is fast, such as the Iberian Peninsula. Here we assess the impact of climate change on 37 endemic and nearly endemic herptiles of the Iberian Peninsula by predicting species distributions for three different times into the future (2020, 2050 and 2080) using an ensemble of bioclimatic models and different combinations of species dispersal ability, emission levels and global circulation models. Our results show that species with Atlantic affinities that occur mainly in the North‐western Iberian Peninsula have severely reduced future distributions. Up to 13 species may lose their entire potential distribution by 2080. Furthermore, our analysis indicates that the most critical period for the majority of these species will be the next decade. While there is considerable variability between the scenarios, we believe that our results provide a robust relative evaluation of climate change impacts among different species. Future evaluation of the vulnerability of individual species to climate change should account for their adaptive capacity to climate change, including factors such as physiological climate tolerance, geographical range size, local abundance, life cycle, behavioural and phenological adaptability, evolutionary potential and dispersal ability.  相似文献   
62.
1. In the altricial rodent, Phyllotis darwini, we found higher body temperatures and faster developmental rates of the thermoregulatory capacity in neonates born from cold- than warm-acclimated mothers.
2. This difference could be explained by maternal effects on the litter, such as high levels of catecholamines and thyroxin levels, high concentration of the uncoupled protein and larger quantity of brown adipose tissue as a consequence of cold acclimation.
3. The exposition of mothers and the maintenance of cold condition during the early development might be responsible of the high metabolism and better thermoregulatory capacity of newborns.
Keywords: Phenotypic plasticity; Thermoregulation; Metabolism; Altricial rodents  相似文献   
63.
比较了两种不同攀援习性,卷须缠绕种薄叶羊蹄甲(Bauhinia tenuiflora)和茎缠绕种刺果藤(Byttneria aspera),木质藤本植物的形态、生长及光合特性对不同光强(4%、35%和全光照)和土壤养分(高和低)的响应。两种藤本植物大部分表型特征主要受光照的影响,而受土壤养分的影响较小。弱光促进地上部分生长,弱光下两种植物均具有较大的比叶面积(specific leaf area,SLA)、茎生物量比(stem mass ratio,SMR)和平均叶面积比(mean leaf area ratio,LARm)。高光强下,两种植物的总生物量和投入到地下部分的比重增加,具有更大的根生物量比(root mass ratio,RMR)、更多的分枝数、更高的光合能力(maximum photosynthetic rate,Pmax)和净同化速率(net assimilation rate,NAR),综合表现为相对生长速率(relative growth rate,RGR)增加。两种藤本植物的Pmax与叶片含氮量的相关性均未达显著水平,但刺果藤的Pmax与SU志间呈显著的正相关,而薄叶羊蹄甲的Pmax与SLA之间相关性不显著。在相同光照强度和土壤养分条件下,卷须缠绕种薄叶羊蹄甲的RGR显著高于茎缠绕种刺果藤。薄叶羊蹄甲的RGR与NAR呈显著正相关,其RGR与SLA、平均叶面积比(EARm)及Pmax之间相关性不显著。刺果藤的RGR与NAR呈显著的正相关,而与SLA存在显著的负相关。上述结果表明,与土壤养分相比,光照强度可能是决定木质藤本分布更为重要的生态因子。卷须缠绕种薄叶羊蹄甲由于具有特化的攀援器官,在形态上和生理上具有更大的可塑性,这使得卷须缠绕种木质藤本在与其它植物的竞争中更具优势。  相似文献   
64.
65.
Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by the lack of fragile X mental retardation protein (FMRP). The animal model of FXS, Fmr1 knockout mice, have deficits in the Morris water maze and trace fear memory tests, showing impairment in hippocampus-dependent learning and memory. However, results for synaptic long-term potentiation (LTP), a key cellular model for learning and memory, remain inconclusive in the hippocampus of Fmr1 knockout mice. Here, we demonstrate that FMRP is required for glycine induced LTP (Gly-LTP) in the CA1 of hippocampus. This form of LTP requires activation of post-synaptic NMDA receptors and metabotropic glutamateric receptors, as well as the subsequent activation of extracellular signal-regulated kinase (ERK) 1/2. However, paired-pulse facilitation was not affected by glycine treatment. Genetic deletion of FMRP interrupted the phosphorylation of ERK1/2, suggesting the possible role of FMRP in the regulation of the activity of ERK1/2. Our study provide strong evidences that FMRP participates in Gly-LTP in the hippocampus by regulating the phosphorylation of ERK1/2, and that improper regulation of these signaling pathways may contribute to the learning and memory deficits observed in FXS.  相似文献   
66.
67.
Regulation of neuropeptide expression in the brain by neurotrophins   总被引:3,自引:0,他引:3  
Neurotrophins, which are structurally related to nerve growth factor, have been shown to promote survival of various neurons. Recently, we found a novel activity of a neurotrophin in the brain: Brain-derived neurotrophic factor (BDNF) enhances expression of various neuropeptides. The neuropeptide differentiation activity was then compared among neurotrophins both in vivo and in vitro. In cultured neocortical neurons, BDNF and neurotrophin-5 (NT-5) remarkably increased levels of neuropeptide Y and somatostatin, and neurotrophin-3 (NT-3) also increased these peptides but required higher concentrations. At elevating substance P, however, NT-3 was as potent as BDNF. In contrast, NGF had negligible or no effect. Neurotrophins administered into neonatal brain exhibited slightly different potencies for increasing these neuropeptides: The most marked increase in neuropeptide Y levels was obtained in the neocortex by NT-5, whereas in the striatum and hippocampus by BDNF, although all three neurotrophins increased somatostatin similarly in all the brain regions examined. Overall spatial patterns of the neuropeptide induction were similar among the neurotrophins. Neurons in adult rat brain can also react with the neurotrophins and alter neuropeptide expression in a slightly different fashion. Excitatory neuronal activity and hormones are known to change expression of neurotrophins. Therefore, neurotrophins, neuronal activity, and hormones influence each other and all regulate neurotransmitter/peptide expression in developing and mature brain. Physiological implication of the neurotransmitter/peptide differentiation activities is also discussed.  相似文献   
68.
High CO2 and high temperature have an antagonistic interaction effect on rice yield potential and present a unique challenge to adapting rice to projected future climates. Understanding how the differences in response to these two abiotic variables are partitioned across rice germplasm accessions may be key to identifying potentially useful sources of resilient alleles for adapting rice to climate change. In this study, we evaluated eleven globally diverse rice accessions under controlled conditions at two carbon dioxide concentrations (400 and 600 ppm) and four temperature environments (29 °C day/21 °C night; 29 °C day/21 °C night with additional heat stress at anthesis; 34 °C day/26 °C night; and 34 °C day/26 °C night with additional heat stress at anthesis) for a suite of traits including five yield components, five growth characteristics, one phenological trait, and four photosynthesis‐related measurements. Multivariate analyses of mean trait data from these eight treatments divide our rice panel into two primary groups consistent with the genetic classification of INDICA/INDICA‐like and JAPONICA populations. Overall, we find that the productivity of plants grown under elevated [CO2] was more sensitive (negative response) to high temperature stress compared with that of plants grown under ambient [CO2] across this diversity panel. We report differential response to CO2 × temperature interaction for INDICA/INDICA‐like and JAPONICA rice accessions and find preliminary evidence for the beneficial introduction of exotic alleles into cultivated rice genomic background. Overall, these results support the idea of using wild or currently unadapted gene pools in rice to enhance breeding efforts to secure future climate change adaptation.  相似文献   
69.
Primitively eusocial paper wasps exhibit considerable plasticity in their division of labor. Dominance interactions among nest mates play a strong role in determining the task performance patterns of adult females. We asked whether dominance status and task performance differences were associated with the development of subregions of the mushroom bodies (MB) of female Mischocyttarus mastigophorus queens and workers. We found that the MB calycal neuropils were better developed (relative to the Kenyon cell body layer) in the dominant females that spent more time on the nest. Increased MB calyx development was more strongly associated with social dominance than with high rates of foraging. The MB of queens resembled those of dominant workers. The results suggest that social interactions are particularly relevant to M. mastigophorus females' cognition. By examining the MB of newly emerged females, we also found evidence for significant age-related changes in MB structure.  相似文献   
70.
Clonal fragments of the stoloniferous herb Glechoma longituba were subjected to a complementary patchiness of light and soil nutrients including two spatially homogeneous treatments (SR–SR and IP–IP) and two spatially heterogeneous treatments (IP–SR and SR–IP). SR and IP indicate patches (shaded, rich) with low light intensity (shaded, S), high nutrient availability (rich, R) and patches (illuminated, poor) with high light intensity (illuminated, I) and low nutrient availability (poor, P), respectively. Plasticity of the species in root–shoot ratio, fitness-related traits (biomass, number of ramets and dry weight per ramet) and clonal morphological traits (length and specific length of stolon internodes, area and specific area of laminae, length and specific length of petioles) were experimentally examined. The aim is to understand adaptation of G. longituba to the environment with reciprocal patches of light and soil nutrients by plasticities both in root–shoot ratio and in (clonal) morphology. Our experiment revealed performance of the clonal fragments growing from patches with high light intensity and low soil nutrient availability into the adjacent opposite patches was increased in terms of the fitness-related characters. R/S ratio and clonal morphology were plastic. Meanwhile, the capture of light resource from the light-rich patches was enhanced while the capture of soil nutrients from either the nutrient-rich or the nutrient-poor patches was not. Analysis of cost and benefit disclosed positive effects of clonal integration on biomass production of ramets in the patches with low light intensity and high soil nutrient availability. These results suggest an existence of reciprocal translocation of assimilates and nutrients between the interconnected ramets. The reinforced performance of the clonal fragments seems to be related with specialization of clonal morphology in the species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号