首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23978篇
  免费   452篇
  国内免费   723篇
  2023年   1182篇
  2022年   828篇
  2021年   605篇
  2020年   409篇
  2019年   819篇
  2018年   788篇
  2017年   702篇
  2016年   258篇
  2015年   316篇
  2014年   510篇
  2013年   621篇
  2012年   301篇
  2011年   1566篇
  2010年   507篇
  2009年   574篇
  2008年   582篇
  2007年   677篇
  2006年   600篇
  2005年   569篇
  2004年   698篇
  2003年   512篇
  2002年   719篇
  2001年   1095篇
  2000年   1046篇
  1999年   1071篇
  1998年   1109篇
  1997年   995篇
  1996年   501篇
  1995年   263篇
  1994年   158篇
  1993年   141篇
  1992年   129篇
  1991年   138篇
  1990年   111篇
  1989年   118篇
  1988年   111篇
  1987年   103篇
  1985年   212篇
  1984年   504篇
  1983年   469篇
  1982年   394篇
  1981年   361篇
  1980年   376篇
  1979年   351篇
  1978年   216篇
  1977年   183篇
  1976年   172篇
  1975年   158篇
  1974年   135篇
  1973年   99篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The diterpenoid furanolactone (columbin) from Aristolochia albida inhibited growth of culture forms of Trypanosoma brucei. In vitro analysis of the compound at 5–250 μg/ml showed complete lysis of the parasites within 10–20 minutes post incubation. At 50 μg/ml, columbin killed about 50% of the parasites which initially appeared swollen under phase contrast microscopy. Also the total amount of cholesterol diminished dose-dependently in the presence of 10–100 μg/ml of columbin after a 3-day incubation period.

In vivo analysis of the compound in T. brucei-infected mice revealed that 25 mg/kg administered for 3 consecutive days, completely cleared the parasites from the peripheral circulation. However, columbin could not clear parasites in the cerebrospinal fluid.  相似文献   
992.
A new approach is proposed for the selective in vivo inhibition of membrane-bound versus cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes with a class of positively-charged, membrane-impermeant sulfonamides. Aromatic/heterocyclic sulfonamides acting as strong (but unselective) inhibitors of this zinc enzyme were derivatized by the attachment of trisub-stituted-pyridinium-ethylcarboxy moieties (obtained from 2, 4, 6–trisubstituted-pyrylium salts and β-alanine) to the amino, imino, hydrazino or hydroxyl groups present in their molecules. Efficient in vitro inhibition (in the nanomolar range) was observed with some of the new derivatives against three investigated CA isozymes, i.e., hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound isozyme; h = human; b = bovine isozyme). Due to their salt-like character, the new type of inhibitors reported here, unlike the classical, clinically used compounds (such as acetazolamide, methazolamide, ethoxzolamide), are unable to penetrate biological membranes, as shown by CJ vivo and in vivo perfusion experiments in rats. The level of bicarbonate excreted into the urine of the experimental animals perfused with solutions of the new and classical inhibitors suggest that: (i) when using the new type of positively-charged sulfonamides. only the membrane-bound enzyme (CA IV) was inhibited. whereas the cytosolic isozymes (CA I and II) were not affected, (ii) in the experiments in which the classical compounds (acetazolamide, bcn-zolamíde. etc.) were used. unselective inhibition of all CA isozymes (I. II and IV) occurred.  相似文献   
993.
Effect of eleven non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activities toward octanoic, palmitic, arachidonic and docosahexaenoic acids was evaluated in mouse liver and brain mitochondria. The drugs tested were aspirin, salicylic acid, diflunisal, mefenamic acid, indomethacin, etodolac, ibuprofen, ketoprofen, naproxen, loxoprofen, flurbiprofen. In mouse liver mitochondria, diflunisal and mefenamic acid exhibited the inhibitory activities not only for octanoic acid (IC50?=?78.7 and 64.7 µM) and but also for palmitic acid (IC50?=?236.5 and 284.4 µM), respectively. Aspirin was an inhibitor for the activation of octanoic acid only (IC50?=?411.0 µM). In the brain, mefenamic acid and diflunisal inhibited strongly palmitoyl-CoA formation (IC50?=?57.3 and 114.0 µM), respectively. The activation of docosahexaenoic acid in brain was sensitive to inhibition by diflunisal and mefenamic acid compared with liver.  相似文献   
994.
Nitrogen and phosphorus concentration in the effluent of a wastewater treatment plant can vary significantly, which could affect the growth kinetic and chemical composition of microalgae when cultivated in this medium. The aim of this work was to study the rate of growth, nutrient removal and carbon dioxide biofixation as well as biomass composition of Scenedesmus obliquus (S. obliquus) when it is cultivated in wastewater at different nitrogen and phosphorus ratio, from 1:1 to 35:1. A more homogeneous method for calculating productivities in batch reactors was proposed. The proper N:P ratio for achieving optimum batch biomass productivity ranged between 9 and 13 (263 and 322 mg L?1 d?1 respectively). This was also the ratio range for achieving a total N and P removal. Above and below this range (9–13) the maximum biomass concentration changed, instead of the specific growth rate.The maximum carbon dioxide biofixation rate was achieved at N:P ratio between 13 and 22 (553 and 557 mg CO2 L?1 d?1 respectively). Lipid and crude protein content, both depend on the aging culture, reaching the maximum lipid content (34%) at the lowest N:P (1:1) and the maximum crude protein content (34.2%) at the highest N:P (35:1).  相似文献   
995.
Four D‐altritol nucleosides with a 3′‐O‐tert‐butyldimethylsilyl protecting group are synthesized (base moieties are adenine, guanine, thymine and 5‐methylcytosine). The nucleosides are obtained by ring opening reaction of 1,5:2,3‐dianhydro‐4,6‐O‐benzylidene‐D‐allitol. Optimal reaction circumstances (NaH, LiH, DBU, phase transfer, microwave irridation) for the introduction of the heterocycles are base‐specific. For the introduction of the 3′‐O‐silyl protecting group, long reaction times and several equivalents of tert‐butyldimethylsilyl chloride are needed.  相似文献   
996.
The CYP1A1 gene encoding for an enzyme involved in the metabolic activation of important tobacco carcinogens could be implicated in smoking-induced lung cancer. Given the strong association between tobacco smoking and lung cancer, the effect of tobacco smoke exposure has to be taken into account when studying the potential association between lung cancer and CYP1A1 genotypes. The effect of two CYP1A1 genetic polymorphisms (Mspl and IIe-Val) on lung cancer risk were evaluated using peripheral blood DNA from 150 lung cancer patients and 171 controls. The Mspl sitepresent allele was found among 19.3% of both cases and controls and the variant allele Val among 6.7% of cases and 8.8% of controls. Lung cancer risks associated with the Mspl site-present allele (OR= 0.9; 95%Cl: 0.5-1.8) or with the Val allele (OR= 0.8; 95%Cl: 0.3-1.9) were not increased after adjustment for tobacco and asbestos exposures. These results persisted when analyses were stratified on smoking status, daily consumption of tobacco or duration of smoking. Similar findings were obtained when squamous cell or small cell carcinomas were studied separately. This study thus suggests a minor role for the known CYP1A1 gene polymorphisms in predisposition to lung cancer among Caucasian populations.  相似文献   
997.
Epithelial-cell micronuclei (MN) are potentially useful markers of occupational exposure to genotoxicants. With intermittent exposures, cells sampled either before or after a specific time interval, reflecting the time it takes for damaged cells to become available at the epithelial surface, are unlikely to be exposure-related. It may then be important to conduct an exposure-window analysis, with the goal of identifying the relevant exposures.We re-analysed individual exposure data from a previous study (Suruda et al. 1993) of MN formation in 22 male mortuary science students exposed to formaldehyde during a 90-day embalming class. We conducted an exposurewindow analysis and compared the results with those obtained with 90-day cumulative exposure. The window widths varied between 7 and 25 days, in 1 day increments, assuming a constant 7-day cell-cycle. We assessed the fit (likelihood-ratio test) of a linear regression model, regressing the change in buccal MN prevalence on formaldehyde exposure, using both asymptotic and non-asymptotic methods. Exposures defined from 7-15 to 7-18 days before specimen collection provided a slightly better fit than the 90-day cumulative exposure, with a doubling of the regression coefficient for the exposure effect (for the 7-16-days window LR = 5.32, p = 0.032, coefficient = 0.088 MN per 1000 cells per ppm-hr; 95% CI = 0.014, 0.16; for the 90-day cumulative exposure LR = 4.44, p = 0.048, coefficient = 0.045 MN per 1000 cells per ppm-hr, 95% CI = 0.0038, 0.086). Although hampered by the small number of subjects, these results reinforce the potential importance of exposure timing.  相似文献   
998.
Prostate cancer (CaP) is the second leading malignancy in men. The role of epithelial cell adhesion molecule (EpCAM), also known as CD326, in CaP progression and therapeutic resistance is still uncertain. Here, we aimed to investigate the roles of EpCAM in CaP metastasis and chemo/radioresistance. Expression of EpCAM in CaP cell lines and human CaP tissues was assessed using immunofluorescence and immunohistochemistry, respectively. EpCAM was knocked down (KD) in PC-3, DU145 and LNCaP-C4-2B cells using small interfering RNA (siRNA), and KD results were confirmed by confocal microscope, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Cell growth was evaluated by proliferation and colony formation assays. The invasive potential was assessed using a matrigel chamber assay. Tumorigenesis potential was measured by a sphere formation assay. Chemo-/radiosensitivity were measured using a colony formation assay. Over-expression of EpCAM was found in primary CaP tissues and lymph node metastases including cancer cells and surrounding stromal cells. KD of EpCAM suppressed CaP proliferation and invasive ability, reduced sphere formation, enhanced chemo-/radiosensitivity, and down-regulated E-cadherin, p-Akt, p-mTOR, p-4EBP1 and p-S6K expression in CaP cells. Our findings suggest that EpCAM plays an important role in CaP proliferation, invasion, metastasis and chemo-/radioresistance associated with the activation of the PI3K/Akt/mTOR signaling pathway and is a novel therapeutic target to sensitize CaP cells to chemo-/radiotherapy.  相似文献   
999.
Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are metabolically related membrane aminophospholipids. In mammalian cells, PS is required for targeting and function of several intracellular signaling proteins. Moreover, PS is asymmetrically distributed in the plasma membrane. Although PS is highly enriched in the cytoplasmic leaflet of plasma membranes, PS exposure on the cell surface initiates blood clotting and removal of apoptotic cells. PS is synthesized in mammalian cells by two distinct PS synthases that exchange serine for choline or ethanolamine in phosphatidylcholine (PC) or PE, respectively. Targeted disruption of each PS synthase individually in mice demonstrated that neither enzyme is required for viability whereas elimination of both synthases was embryonic lethal. Thus, mammalian cells require a threshold amount of PS. PE is synthesized in mammalian cells by four different pathways, the quantitatively most important of which are the CDP-ethanolamine pathway that produces PE in the ER, and PS decarboxylation that occurs in mitochondria. PS is made in ER membranes and is imported into mitochondria for decarboxylation to PE via a domain of the ER [mitochondria-associated membranes (MAM)] that transiently associates with mitochondria. Elimination of PS decarboxylase in mice caused mitochondrial defects and embryonic lethality. Global elimination of the CDP-ethanolamine pathway was also incompatible with mouse survival. Thus, PE made by each of these pathways has independent and necessary functions. In mammals PE is a substrate for methylation to PC in the liver, a substrate for anandamide synthesis, and supplies ethanolamine for glycosylphosphatidylinositol anchors of cell-surface signaling proteins. Thus, PS and PE participate in many previously unanticipated facets of mammalian cell biology. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   
1000.
Lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), the most prominent lysoglycerophospholipids, are emerging as a novel class of inflammatory lipids, joining thromboxanes, leukotrienes and prostaglandins with which they share metabolic pathways and regulatory mechanisms. Enzymes that participate in LPC and LPA metabolism, such as the phospholipase A2 superfamily (PLA2) and autotaxin (ATX, ENPP2), play central roles in regulating LPC and LPA levels and consequently their actions. LPC/LPA biosynthetic pathways will be briefly presented and LPC/LPA signaling properties and their possible functions in the regulation of the immune system and chronic inflammation will be reviewed. Furthermore, implications of exacerbated LPC and/or LPA signaling in the context of chronic inflammatory diseases, namely rheumatoid arthritis, multiple sclerosis, pulmonary fibrosis and hepatitis, will be discussed. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号