首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   939篇
  免费   85篇
  国内免费   9篇
  2023年   7篇
  2022年   13篇
  2021年   13篇
  2020年   17篇
  2019年   23篇
  2018年   38篇
  2017年   23篇
  2016年   26篇
  2015年   28篇
  2014年   66篇
  2013年   64篇
  2012年   39篇
  2011年   42篇
  2010年   46篇
  2009年   38篇
  2008年   65篇
  2007年   59篇
  2006年   38篇
  2005年   36篇
  2004年   27篇
  2003年   22篇
  2002年   20篇
  2001年   18篇
  2000年   9篇
  1999年   11篇
  1998年   8篇
  1997年   11篇
  1996年   11篇
  1995年   12篇
  1994年   15篇
  1993年   8篇
  1992年   9篇
  1991年   13篇
  1990年   11篇
  1989年   5篇
  1988年   8篇
  1987年   9篇
  1986年   6篇
  1985年   14篇
  1984年   16篇
  1983年   7篇
  1982年   12篇
  1981年   10篇
  1980年   7篇
  1979年   11篇
  1978年   6篇
  1977年   12篇
  1976年   6篇
  1975年   7篇
  1974年   6篇
排序方式: 共有1033条查询结果,搜索用时 656 毫秒
71.
Two methylation steps are necessary for the biosynthesis of monolignols, the lignin precursors. Caffeic acid O-methyltransferase (COMT) O-methylates at the C5 position of the phenolic ring. COMT is responsible for the biosynthesis of sinapyl alcohol, the precursor of syringyl lignin units. The O-methylation at the C3 position of the phenolic ring involves the Caffeoyl CoA 3-O-methyltransferase (CCoAOMT). The CCoAOMT 1 gene (At4g34050) is believed to encode the enzyme responsible for the first O-methylation in Arabidopsis thaliana. A CCoAOMT1 promoter-GUS fusion and immunolocalization experiments revealed that this gene is strongly and exclusively expressed in the vascular tissues of stems and roots. An Arabidopsis T-DNA null mutant named ccomt 1 was identified and characterised. The mutant stems are slightly smaller than wild-type stems in short-day growth conditions and has collapsed xylem elements. The lignin content of the stem is low and the S/G ratio is high mainly due to fewer G units. These results suggest that this O-methyltransferase is involved in G-unit biosynthesis but does not act alone to perform this step in monolignol biosynthesis. To determine which O-methyltransferase assists CCoAOMT 1, a comt 1 ccomt1 double mutant was generated and studied. The development of comt 1 ccomt1 is arrested at the plantlet stage in our growth conditions. Lignins of these plantlets are mainly composed of p-hydroxyphenyl units. Moreover, the double mutant does not synthesize sinapoyl malate, a soluble phenolic. These results suggest that CCoAOMT 1 and COMT 1 act together to methylate the C3 position of the phenolic ring of monolignols in Arabidopsis. In addition, they are both involved in the formation of sinapoyl malate and isorhamnetin.  相似文献   
72.
Lipid A is an integral component of the lipopolysaccharide (LPS) that forms the selective and protective outer monolayer of Gram-negative bacteria, and is essential for bacterial growth and viability. UDP-N-acetylglucosamine acyltransferase (LpxA) initiates lipid A biosynthesis by catalyzing the transfer of R-3-hydroxymyristic acid from acyl carrier protein to the 3'-hydroxyl group of UDP-GlcNAc. The enzyme is a homotrimer, and previous studies suggested that the active site lies within a positively charged cleft formed at the subunit-subunit interface. The crystal structure of Escherichia coli LpxA in complex with UDP-GlcNAc reveals details of the substrate-binding site, with prominent hydrophilic interactions between highly conserved clusters of residues (Asn198, Glu200, Arg204 and Arg205) with UDP, and (Asp74, His125, His144 and Gln161) with the GlcNAc moiety. These interactions serve to bind and orient the substrate for catalysis. The crystallographic model supports previous results, which suggest that acylation occurs via nucleophilic attack of deprotonated UDP-GlcNAc on the acyl donor in a general base-catalyzed mechanism involving a catalytic dyad of His125 and Asp126. His125, the general base, interacts with the 3'-hydroxyl group of UDP-GlcNAc to generate the nucleophile. The Asp126 side-chain accepts a hydrogen bond from His125 and helps orient the general base to participate in catalysis. Comparisons with an LpxA:peptide inhibitor complex indicate that the peptide competes with both nucleotide and acyl carrier protein substrates.  相似文献   
73.
Enzyme activities localized in the luminal compartment of the endoplasmic reticulum are integrated into the cellular metabolism by transmembrane fluxes of their substrates, products and/or cofactors. Most compounds involved are bulky, polar or even charged; hence, they cannot be expected to diffuse through lipid bilayers. Accordingly, transport processes investigated so far have been found protein-mediated. The selective and often rate-limiting transport processes greatly influence the activity, kinetic features and substrate specificity of the corresponding luminal enzymes. Therefore, the phenomenological characterization of endoplasmic reticulum transport contributes largely to the understanding of the metabolic functions of this organelle. Attempts to identify the transporter proteins have only been successful in a few cases, but recent development in molecular biology promises a better progress in this field.  相似文献   
74.
Homoserine O-acetyltransferase (HTA, EC 2.3.1.31) initiates methionine biosynthesis pathway by catalyzing the transfer of acetyl group from acetyl-CoA to homoserine. This study reports the crystal structure of HTA from Leptospira interrogans determined at 2.2 Å resolution using selenomethionyl single-wavelength anomalous diffraction method. HTA is modular and consists of two structurally distinct domains—a core α/β domain containing the catalytic site and a helical bundle called the lid domain. Overall, the structure fold belongs to α/β hydrolase superfamily with the characteristic ‘catalytic triad’ residues in the active site. Detailed structure analysis showed that the catalytic histidine and serine are both present in two conformations, which may be involved in the catalytic mechanism for acetyl transfer.  相似文献   
75.
A series of novel 4-thiophenyl quinoline-based mevalonolactone derivatives were synthesized from ethyl 6,7,8-trisubstituted-4-chloro-quinoline-3-carboxylates by several reactions and evaluated for their ability to inhibit the rat HMG CoA reductase in vitro. It was found that substitution with a variety of thiophenyl groups at position 4 in quinoline resulted in retention or enhancement of the inhibition and the preferable groups were 4-isopropyl-thiophenyl and 3-methoxy-thiophenyl. (4R,6S)-6-[(E)-2-(6,7,8-trifluoro-4-isopropylthiophenyl-quinoline-3-yl)-ethenyl]-3,4,5,6-tetrahydro-4-hydroxy-2H-pyran-2-one (A16) and (4R, 6S)-6-[(E)-2-(6-fluoro-4,7-di-(3-methoxy-thiophenyl)-quinoline-3-yl)-ethenyl]-3,4,5,6-tetrahydro-4-hydroxy-2H-pyran-2-one (A23) were approximately three times more potent than rosuvastatin or pitavastatin in inhibiting HMG CoA reductase and selected as the hypocholesterolemic candidates for further evaluation.  相似文献   
76.
Ageing has been defined as a progressive decrease in physiological capacity and a reduced ability to respond to environmental stresses. It has been observed that diet-restricted animals show a minor morbidity in age-related disease. Among these age-related diseases, hypercholesterolemia is the most recurring one and it is often associated with cardiac failure. Several studies have been published indicating age-dependent changes in circulating levels of cholesterol in both humans and in rodents; recently changes have also been reported in the proteins involved in cholesterol homeostasis, that is, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR), Insig-induced gene (Insig) protein, SREBP cleavage activating protein (SCAP), sterol regulatory element binding protein (SREBP), and low density lipoprotein receptor (LDLr). Most age-related modifications of biochemical parameters are normalized or very improved in food-restricted animals, so the aim of this work is to examine whether or not alterations of the factors involved in cholesterol homeostasis which occur during ageing could be counteracted by caloric restriction (CR). The data show that the diet restrictions used attenuate the age-related effects on the factors involved in the synthesis and the degradation rate of HMG-CoAR; in spite of this, CRs have a good effect on the age-related hypercholesterolemia whose reduction seems to depend both on the correct membrane LDLr localization and on the proper restored HMG-CoAR activity.  相似文献   
77.
The acyl-CoA binding protein (ACBP) is essential for the fatty acid metabolism, membrane structure, membrane fusion, and ceramide synthesis. Here high resolution crystal structures of human cytosolic liver ACBP, unliganded and liganded with a physiological ligand, myristoyl-CoA are described. The binding of the acyl-CoA molecule induces only few structural differences near the binding pocket. The crystal form of the liganded ACBP, which has two ACBP molecules in the asymmetric unit, shows that in human ACBP the same acyl-CoA binding pocket is present as previously described for the bovine and Plasmodium falciparum ACBP and the mode of binding of the 3'-phosphate-AMP moiety is conserved. Unexpectedly, in one of the acyl-CoA binding pockets the acyl moiety is bound in a reversed mode as compared with the bovine and P. falciparum structures. In this binding mode, the myristoyl-CoA molecule is fully ordered and bound across the two ACBP molecules of the crystallographic asymmetric unit: the 3'-phosphate-AMP moiety is bound in the binding pocket of one ACBP molecule and the acyl chain is bound in the pocket of the other ACBP molecule. The remaining binding pocket cavities of these two ACBP molecules are filled by other ligand fragments. This novel binding mode shows that the acyl moiety can flip out of its classical binding pocket and bind elsewhere, suggesting a mechanism for the acyl-CoA transfer between ACBP and the active site of a target enzyme. This mechanism is of possible relevance for the in vivo function of ACBP.  相似文献   
78.
Prior work showed that expression of acyl carrier proteins (ACPs) of a diverse set of bacteria replaced the function of Escherichia coli ACP in lipid biosynthesis. However, the AcpAs of Lactococcus lactis and Enterococcus faecalis were inactive. Both failed to support growth of an E. coli acpP mutant strain. This defect seemed likely because of the helix II sequences of the two AcpAs, which differed markedly from those of the proteins that supported growth. To test this premise, chimeric ACPs were constructed in which L. lactis helix II replaced helix II of E. coli AcpP and vice versa. Expression of the AcpP protein L. lactis AcpA helix II allowed weak growth, whereas the L. lactis AcpA-derived protein that contained E. coli AcpP helix II failed to support growth of the E. coli mutant strain. Replacement of the L. lactis AcpA helix II residues in this protein showed that substitution of valine for the phenylalanine residue four residues downstream of the phosphopanthetheine-modified serine gave robust growth and allowed modification by the endogenous AcpS phosphopantetheinyl transferase (rather than the promiscuous Sfp transferase required to modify the L. lactis AcpA and the chimera of L. lactis AcpA helix II in AcpP). Further chimera constructs showed that the lack of function of the L. lactis AcpA-derived protein containing E. coli AcpP helix II was due to incompatibility of L. lactis AcpA helix I with the downstream elements of AcpP. Therefore, the origins of ACP incompatibility can reside in either helix I or in helix II.  相似文献   
79.
Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4–3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7–13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6–6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth.  相似文献   
80.
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is an inborn error of ketone body metabolism and causes episodic ketoacidosis. We report clinical and molecular analyses of 5 patients with SCOT deficiency. Patients GS07, GS13, and GS14 are homozygotes of S405P, L327P, and R468C, respectively. GS17 and GS18 are compound heterozygotes for S226N and A215V, and V404F and E273X, respectively. These mutations have not been reported previously. Missense mutations were further characterized by transient expression analysis of mutant cDNAs. Among 6 missense mutations, mutants L327P, R468C, and A215V retained some residual activities and their mutant proteins were detected in immunoblot analysis following expression at 37 °C. They were more stable at 30 °C than 37 °C, indicating their temperature sensitive character. The R468C mutant is a distinct temperature sensitive mutant which retained 12% and 51% of wild-type residual activities at 37 and 30 °C, respectively. The S226N mutant protein was detected but retained no residual activity. Effects of missense mutations were predicted from the tertiary structure of the SCOT molecule. Main effects of these mutations were destabilization of SCOT molecules, and some of them also affected catalytic activity. Among 5 patients, GS07 and GS18 had null mutations in both alleles and the other three patients retained some residual SCOT activities. All 5 developed a first severe ketoacidotic crisis with blood gas pH < 7.1, and experienced multiple ketoacidotic decompensations (two of them had seven such episodes). In general, the outcome was good even following multiple ketoacidotic events. Permanent ketosis or ketonuria is considered a pathognomonic feature of SCOT deficiency. However, this condition depends not only on residual activity but also on environmental factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号