首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   939篇
  免费   85篇
  国内免费   9篇
  1033篇
  2023年   7篇
  2022年   13篇
  2021年   13篇
  2020年   17篇
  2019年   23篇
  2018年   38篇
  2017年   23篇
  2016年   26篇
  2015年   28篇
  2014年   66篇
  2013年   64篇
  2012年   39篇
  2011年   42篇
  2010年   46篇
  2009年   38篇
  2008年   65篇
  2007年   59篇
  2006年   38篇
  2005年   36篇
  2004年   27篇
  2003年   22篇
  2002年   20篇
  2001年   18篇
  2000年   9篇
  1999年   11篇
  1998年   8篇
  1997年   11篇
  1996年   11篇
  1995年   12篇
  1994年   15篇
  1993年   8篇
  1992年   9篇
  1991年   13篇
  1990年   11篇
  1989年   5篇
  1988年   8篇
  1987年   9篇
  1986年   6篇
  1985年   14篇
  1984年   16篇
  1983年   7篇
  1982年   12篇
  1981年   10篇
  1980年   7篇
  1979年   11篇
  1978年   6篇
  1977年   12篇
  1976年   6篇
  1975年   7篇
  1974年   6篇
排序方式: 共有1033条查询结果,搜索用时 15 毫秒
51.
Chalcones, the central precursor of flavonoids, are synthesized exclusively in plants from tyrosine and phenylalanine via the sequential reaction of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate:coenzyme A ligase (4CL) and chalcone synthase (CHS). Chalcones are converted into the corresponding flavanones by the action of chalcone isomerase (CHI), or non-enzymatically under alkaline conditions. PAL from the yeast Rhodotorula rubra, 4CL from an actinomycete Streptomyces coelicolor A3(2), and CHS from a licorice plant Glycyrrhiza echinata, assembled as artificial gene clusters in different organizations, were used for fermentation production of flavanones in Escherichia coli. Because the bacterial 4CL enzyme attaches CoA to both cinnamic acid and 4-coumaric acid, the designed biosynthetic pathway bypassed the C4H step. E. coli carrying one of the designed gene clusters produced about 450 μg naringenin/l from tyrosine and 750 μg pinocembrin/l from phenylalanine. The successful production of plant-specific flavanones in bacteria demonstrates the usefulness of combinatorial biosynthesis approaches not only for the production of various compounds of plant and animal origin but also for the construction of libraries of "unnatural" natural compounds. Dedicated to Professor Sir David Hopwood.  相似文献   
52.
There is controversy about the effect of saturated and polyunsaturated fats on 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, the main regulatory enzyme of cholesterogenic pathway. Results from dietary studies are difficult to interpret because diets normally contain a mixture of fatty acids. Therefore, we have used Reuber H35 hepatoma cells whose phospholipids were enriched in different individual fatty acids and have studied their effects on the cellular reductase activity. Lauric, myristic, eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids were supplemented to the culture medium coupled to bovine serum albumin. The four fatty acids were incorporated into phospholipids from cells grown in media containing whole serum or lipoprotein-poor serum (LPPS). Reductase activity of cells cultivated in a medium with LPPS was three to four times higher than those cultivated in medium with whole serum. Saturated fatty acids increased reductase activity of cells grown in medium with whole serum, whereas n-3 polyunsaturated fatty acids (PUFA) decreased it. However, both saturated and polyunsaturated fatty acids increased reductase activity when serum lipoproteins were removed. In conclusion, this is one of the first reports demonstrating that saturated and n-3 PUFA only show differential effects on HMG-CoA reductase activity in the presence of lipoproteins.  相似文献   
53.
In order to investigate the effects of high-fat diets rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), Wistar rats bearing subcutaneous implants of the Walker 256 tumour were fed pelleted chow containing low DHA/EPA or high DHA/EPA. The presence of n-3 polyunsaturated fatty acids (PUFAs) led to a marked suppression (35-46%) of tumour growth over a 12 day period. Both the whole tumour homogenate and the Percoll-purified mitochondrial fraction presented significant changes in fatty acid composition. The levels of EPA increased in both n-3 dietary groups while the levels of DHA increased only in the high DHA/EPA group, in comparison with the control chow-fed group. The presence of n-3 PUFAs led to an increase in mitochondrial acyl CoA synthetase activity, but neither the cytoplasmic acyl CoA content nor the n-3 fatty acid composition of the cytoplasmic acyl CoAs was altered by the diet. The content of thiobarbituric acid-reactive substances (TBARS) was increased in the low DHA/EPA group but was unchanged in the high DHA/EPA group. In vitro studies with the Walker 256 cell line showed a 46% decrease in cell growth in the presence of either EPA or DHA which was accompanied by a large decrease in the measured mitochondrial membrane potential. The TBARS content was increased only in the EPA-exposed cells. Cell cycle analysis identified a decrease in G0-G1 phase cells and an increase in G2-M phase cells and apoptotic cells, for both EPA and DHA-exposed cells. The data show that the presence of n-3 PUFAs in the diet is able to significantly after the growth rate of the Walker 256 tumour. The involvement of changes in mitochondrial membrane composition and membrane potential have been indicated for both EPA and DHA, while changes in lipid peroxidation have been identified in the presence of EPA but not of DHA.  相似文献   
54.
55.
Malonyl‐CoA decarboxylase (MCD) can control the level of malonyl‐CoA in cell through the decarboxylation of malonyl‐CoA to acetyl‐CoA, and plays an essential role in regulating fatty acid metabolism, thus it is a potential target for drug discovery. However, the interactions of MCD with CoA derivatives are not well understood owing to unavailable crystal structure with a complete occupancy in the active site. To identify the active site of MCD, molecular docking and molecular dynamics simulations were performed to explore the interactions of human mitochondrial MCD (HmMCD) and CoA derivatives. The findings reveal that the active site of HmMCD indeed resides in the prominent groove which resembles that of CurA. However, the binding modes are slightly different from the one observed in CurA due to the occupancy of the side chain of Lys183 from the N‐terminal helical domain instead of the adenine ring of CoA. The residues 300 ? 305 play an essential role in maintaining the stability of complex mainly through hydrogen bond interactions with the pyrophosphate moiety of acetyl‐CoA. Principle component analysis elucidates the conformational distribution and dominant concerted motions of HmMCD. MM_PBSA calculations present the crucial residues and the major driving force responsible for the binding of acetyl‐CoA. These results provide useful information for understanding the interactions of HmMCD with CoA derivatives. Proteins 2016; 84:792–802. © 2016 Wiley Periodicals, Inc.  相似文献   
56.
An efficient 'O-acyl isopeptide method' for the synthesis of difficult sequence-containing peptides was applied successfully to the synthesis of amyloid beta peptide (Abeta) 1-42 via a water-soluble O-acyl isopeptide of Abeta1-42, i.e. '26-O-acyl isoAbeta1-42' (6). This paper describes the detailed synthesis of Abeta1-42 focusing on the importance of resin selection and the analysis of side reactions in the O-acyl isopeptide method. Protected '26-O-acyl isoAbeta1-42' peptide resin was synthesized using 2-chlorotrityl chloride resin with minimum side reactions in comparison with other resins and deprotected crude 26-O-acyl isoAbeta1-42 was easily purified by HPLC due to its relatively good purity and narrow elution with reasonable water solubility. This suggests that only one insertion of the isopeptide structure into the sequence of the 42-residue peptide can suppress the unfavourable nature of its difficult sequence. The migration of O-acyl isopeptide to intact Abeta1-42 under physiological conditions (pH 7.4) via O--N intramolecular acyl migration reaction was very rapid and no other by-product formation was observed while 6 was stable under storage conditions. These results concluded that our strategy not only overcomes the solubility problem in the synthesis of Abeta1-42 and can provide intact Abeta1-42 efficiently, but is also applicable in the synthesis of large difficult sequence-containing peptides at least up to 50 amino acids. This synthesis method would provide a biological evaluation system in Alzheimer's disease research, in which 26-O-acyl isoAbeta1-42 can be stored in a solubilized form before use and then rapidly produces intact Abeta1-42 in situ during biological experiments.  相似文献   
57.
Nishida T  Orikasa Y  Ito Y  Yu R  Yamada A  Watanabe K  Okuyama H 《FEBS letters》2006,580(11):2731-2735
The colony-forming ability of Escherichia coli genetically engineered to produce eicosapentaenoic acid (EPA) grown in 3mM hydrogen peroxide (H(2)O(2)) was similar to that of untreated cells. It was rapidly lost in the absence of EPA. H(2)O(2)-induced protein carbonylation was enhanced in cells lacking EPA. The fatty acid composition of the transformants was unaffected by H(2)O(2) treatment, but the amount of fatty acids decreased in cultures of cells lacking EPA and increased in cultures of cells producing EPA, suggesting that cellular EPA is stable in the presence of H(2)O(2) in vivo and may protect cells directly against oxidative damage. We discuss the possible role of EPA in partially blocking the penetration of H(2)O(2) into cells through membranes containing EPA.  相似文献   
58.
Synthetic peptides reproducing the helix‐loop‐helix (HLH) domains of the Id proteins fold into highly stable helix bundles upon self‐association. Recently, we have shown that the replacement of the dipeptide Val‐Ser at the loop–helix‐2 junction with the corresponding O‐acyl iso‐dipeptide leads to a completely unfolded state that only refolds after intramolecular ON acyl migration. Herein, we report on an Id HLH analog based on the substitution of the Pro‐Ser motif at the helix‐1–loop junction with the corresponding O‐acyl iso‐dipeptide. This analog has been successfully synthesized by solid‐phase Fmoc chemistry upon suppression of DKP formation. No secondary structure could be detected for the O‐acyl iso‐peptide before its conversion into the native form by ON acyl shift. These results show that the loop–helix junctions are determinant for the folded/unfolded state of the Id HLH domain. Further, despite the high risk of DKP formation, peptides containing O‐acyl iso‐Pro‐Ser/Thr units are synthetically accessible by Fmoc chemistry. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
59.
The effects of cholestyramine feeding on biliary ursodeoxycholic acid, fecal excretion of bile acids and neutral sterols on cholesterol 7α-hydroxylase and hepatic HMG-CoA reductase were examined in the guinea pig. In the bile there was a 57% decrease in the concentration of ursodeoxycholic acid while an increase was observed in the concentration of chenodeoxycholic acid. Cholestyramine feeding for ten days resulted in a decrease in plasma cholesterol levels and an increase in both hepatic HMG-CoA reductase and cholesterol 7α-hydroxylase activities. The fecal excretion of both bile acids and neutral sterols was significantly increased.  相似文献   
60.
Acetate uptake by strains of Synechococcus and Aphanocapsa in short experiments required light, and was strongly inhibited by m-dichlorocarbonyl cyanide phenylhydrazone and dichlorophenyl dimethyl urea. Acetate carbon was distributed in amino acids and in the acyl portion of lipids in the same way as during growth experiments when CO2 was available, but the reduced incorporation in the absence of CO2 was primarily into the lipid fraction. An apparent K m for uptake by Synechococcus and for Aphanocapsa 6308 of 20 and 180 M at pH 7.4 was obtained; corresponding V max values were 6 and 11 nmol x min-1 x mg protein-1. Uptake with Synechococcus was affected by pH, with affinity decreased and maximal rate increase with rising pH. Acetate uptake was not affected by propionate or butyrate when both were added at the same time, but a light and concentration dependent inhibition developed if suspensions were preincubated with propionate. Acetate carbon moved rapidly into acid insoluble material, but after 10–15 s 75% or more of the recovered intracellular counts were in acetyl CoA. Counts in this compound were reduced by preincubation with propionate.Kinetic measurements of acetyl CoA synthetase in fractionated cell extracts gave values for K m of about 50 M for acetate, 5 mM for propionate, 100 M for CoA and 0.38 mM for ATP. The internal pool of free CoA was measured to be about 20 M, and was reduced by preincubation with propionate. This suggests that the activity of CoA-mediated reactions may be regulated by the availability of this cofactor.Abbreviations Used CCCP m-Dichlorocarbonyl cyanide phenyl hydrazone - DCMU dichlorophenyl dimethyl urea - TCA trichloroacetic acid - Tris trishydroxymethyl amino methane - HEPES N-2-hydroxyethylpiperazine-N-2-ethane-sulfonic acid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号