首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5152篇
  免费   550篇
  国内免费   166篇
  2024年   10篇
  2023年   106篇
  2022年   162篇
  2021年   272篇
  2020年   295篇
  2019年   393篇
  2018年   241篇
  2017年   158篇
  2016年   156篇
  2015年   186篇
  2014年   297篇
  2013年   376篇
  2012年   230篇
  2011年   267篇
  2010年   186篇
  2009年   186篇
  2008年   183篇
  2007年   220篇
  2006年   196篇
  2005年   174篇
  2004年   163篇
  2003年   184篇
  2002年   103篇
  2001年   101篇
  2000年   113篇
  1999年   97篇
  1998年   91篇
  1997年   66篇
  1996年   77篇
  1995年   67篇
  1994年   57篇
  1993年   58篇
  1992年   70篇
  1991年   51篇
  1990年   42篇
  1989年   38篇
  1988年   37篇
  1987年   29篇
  1986年   25篇
  1985年   32篇
  1984年   20篇
  1983年   13篇
  1982年   9篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   4篇
  1975年   3篇
排序方式: 共有5868条查询结果,搜索用时 31 毫秒
61.
Abstract: We used in vitro translation and antibodies against phosphoserine and the eukaryotic initiation factors eIF-4E, eIF-4G, and eIF-2α to examine the effects of global brain ischemia and reperfusion on translation initiation and its regulation in a rat model of 10 min of cardiac arrest followed by resuscitation and 90 min of reperfusion. Translation reactions were performed on postmitochondrial supernatants from brain homogenates with and without aurintricarboxylic acid to separate incorporation due to run-off from incorporation due to peptide synthesis initiated in vitro. The rate of leucine incorporation due to in vitro-initiated protein synthesis in normal forebrain homogenates was ∼0.4 fmol of leucine/min/µg of protein and was unaffected by 10 min of cardiac arrest, but 90 min of reperfusion reduced this rate 83%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blots of these homogenates showed that neither 10 min of global brain ischemia nor 90 min of reperfusion induced significant alterations in the quantity or serine phosphorylation of eIF-4E. However, we observed in all 90-min-reperfused samples eIF-4G fragments that also bound eIF-4E. The amount of eIF-2α was not altered by ischemia or reperfusion, and immunoblotting after isoelectric focusing did not detect serine-phosphorylated eIF-2α in normal samples or in those obtained after ischemia without reperfusion. However, serine-phosphorylated eIF-2α was uniformly present after 90 min of reperfusion and represented 24 ± 3% of the eIF-2α in these samples. The serine phosphorylation of eIF-2α and partial fragmentation of eIF-4G observed after 90 min of reperfusion offer an explanation for the inhibition of protein synthesis.  相似文献   
62.
急性低氧对大鼠血液中儿茶酚胺及血小板聚集性的影响   总被引:8,自引:1,他引:7  
李新波  郭学勤 《生理学报》1996,48(5):457-463
健康SD雄性大鼠,体重250-300g,麻醉、气管插管,用人工呼吸机经气袋供气,自发吸入氧浓度为9%的氧氮混合气,用高效液相色谱-电化学联合检测法及电阻法检测循环血液中儿茶酚胺及全血血小权聚集性的动态变化。结果:急性低氧15min时血液中肾肾上腺素(A)浓度及全血血小板聚集性显著增加(P〈0.01),而去甲肾上腺素(NA)浓度虽有所增加,但无统计学意义(P〉0.05);复氧15min时血液中儿茶酚  相似文献   
63.
Neurofilaments subunits (NF-H, NF-M, NF-L) and glial fibrillary acidic protein (GFAP) were investigated in the hippocampus of rats after distinct periods of reperfusion (1 to 15 days) following 20 min of transient global forebrain ischemia in the rat. In vitro [14Ca]leucine incorporation was not altered until 48 h after the ischemic insult, however concentration of intermediate filament subunits significantly decreased in this period. Three days after the insult, leucine incorporation significantly increased while the concentration NF-H, NF-M, and NF-L were still diminished after 15 days of reperfusion. In vitro incorporation of32P into NF-M and NF-L suffered immediately after ischemia, but returned to control values after two days of reperfusion. GFAP levels decreased immediately after ischemia but quickly recovered and significantly peaked from 7 to 10 days after the insult. These results suggest that transient ischemia followed by reperfusion causes proteolysis of intermediate filaments in the hippocampus, and that proteolysis could be facilitated by diminished phosphorylation levels of NF-M and NF-L.  相似文献   
64.
Guanine nucleotide-binding regulatory proteins (G proteins) play a major role in the regulation of a number of physiological processes, such as stimulation or Inhibition of adenylate cyclase activity or gaiting of ionic channels. Myocardial ischemia could induce the changes in receptor-G protein signal transduction system in the heart. Therefore, this article will focus on the role and alterations of G proteins (especially, Gs and Gi) in myocardial ischemia. The Gi protein rapidly loses functional activity during very early myocardial ischemia. In contrast to Gi protein, the function of Gs protein during this phase has not been evaluated. Moreover, the changes in Gs protein after 30 min of ischemia are contradictory. However, the sensitization of the adenylate cyclase activity in the very early phase of acute ischemia is gradually replaced by a decrease in adenylate cyclase activity with prolonged ischemia. The decrease in the function and amount of Gs protein may be one of the factors that induce these changes. The function of Gs protein was also decreased in the canine hearts with ischemia and reperfusion. In contrast to ischemia and reperfusion, there are no significant alterations in G proteins and modulation of adenylate cyclase in the stunned myocardium. It has become increasingly evident that Gi protein may play an important role in the cardioprotective effects of preconditioning. When -adrenoceptor densities are reduced in chronic myocardial ischemia, decreased in the amount and function of Gi protein and increased amount of Gs protein may play the role in preservation of the adenylate cyclase activity. These alterations in G proteins may play the important role in the myocardial function during myocardial ischemia.  相似文献   
65.
Lavanchy  N.  Grably  S.  Garnier  A.  Rossi  A. 《Molecular and cellular biochemistry》1996,160(1):273-282
The role played by glycogenolysis in the ischemic heart has been recently put into question because it is suspected that a slowing down of this process could be beneficial for the tolerance of the myocardium to ischemia. The role of the intracellular effectors that control the rate of glycogenolysis has therefore regained interest. We aimed to understand the role played by those intracellular effectors which are directly related to the energy balance of the heart. To this end, we review some of the previously published data on this subject and we present new data obtained from P-31 and C-13 NMR spectroscopic measurement on isolated rat heart. Two conditions of ischemia were studied: 15 min global no-flow and 25 min low-flow ischemia. The hearts were isolated either from control animals or from rats pre-treated with isoproterenol (5 mg.kg–1 b.w. i.p.) 1 h before the perfusion in order to C-13 label glycogen stores. Our main results are as follows: (1) the biochemically determined glycogenolysis rate during the early phase of ischemia (up to 10–15 min) was larger in no-flow ischemia than in low-flow conditions for both groups, (2) direct measurement of the glycogenolysis rate, as determined by C-13 NMR, after labelling of the glycogen pool in the hearts from isoproterenol-treated rats, confirms the estimations from the biochemical data, (3) glycogenolysis was slower in the hearts from pre-treated animals than in control hearts for both conditions of ischemia, (4) the total activity of glycogen phosphorylase (a + b) increased, by 50%, after 5 min no-flow ischemia, whereas it decreased by 42% after the same time of low-flow ischemia. However, the ratio phosphorylase a/a + b was not altered, whatever the conditions, (5) the concentration of inorganic phosphate (Pi) increased sharply during the first minutes of ischemia, to values above 8–10 mM, under all conditions studied. The rate of increase was larger during no-flow ischemia than during low-flow ischemia. The concentration of Pi was thereafter higher in controls than in the hearts from isoproterenol-treated animals.The calculated cytosolic concentration of free 5 AMP increased sharply at the onset of ischemia, reaching in a few minutes values above 30 M in controls and significantly lower values, around 15 M, in the hearts from isoproterenol-treated rats. (6) The hearts from isoproterenol-treated rats displayed a reduced intracellular acidosis, when compared to controls, under both conditions of ischemia.We conclude that the intracellular effectors, mainly free AMP, play an essential role in the control of glycogenolysis via allosteric control of phosphorylase b activity. The alteration in the concentration of free Pi, the substrate of both forms of phosphorylase, can also be considered as determinant in the control of the rate of glycogenolysis.The attenuation of ischemia-induced intracellular acidosis in the hearts from isoproterenol-treated rats could be a consequence of a reduced glycogenolytic rate and is likely to be related to a better resumption of the mechanical function on reperfusion.  相似文献   
66.
In primary cultures of neonatal rat heart cells we found a linear correlation between the number of L-type calcium channel-specific dihydropyridine (DHP) binding sites and spontaneous beating frequency (v).Formation of glycoproteins in tissue culture was suppressed by different inhibitors of N-glycosylation. This inhibition alters to a different extent the binding of the DHP ligand (+)-[methyl-3H]PN 200-110 and v. The most severe but reversible effect occurs at 6 g/ml tunicamycin (Bmax 45% and v 6%, resp., of control), a slight increase in Bmax at 0.1–0.5 mM castanospermine and 0.05–2.5 mM deoxymannojirimycin. The other inhibitors gave no significant alterations of Bmax.  相似文献   
67.
Phosphorylation of cardiac junctional and free sarcoplasmic reticulum (SR) by protein kinase C (PKC) isoforms and was investigated. Both SR and PKC were isolated from canine heart. Junctional and free SR vesicles were prepared by calcium-phosphate-loading. The substrate specificities of PKC and PKC were found to be similar in both SR fractions. A high molecular weight junctionally-associated protein was phosphorylated by PKA, PKC and an endogenous Ca2+/calmodulin-dependent protein kinase activity: the highest levels of phosphate incorporation being catalysed by the latter kinase. In addition to this high molecular weight junctionally-associated protein, PKC induced phosphorylation of 45, 96 kDa and several proteins of greater than 200 kDa in junctional SR. A protein of 96 kDa was phosphorylated by both isoforms in junctional and free SR. The major substrate for PKA, PKC, PKC and the Ca2+/calmodulin-dependent protein kinase, in both junctional and free SR, was phospholamban. Although the phosphorylation of phospholamban by PKC was activated by Ca2+, a component of this activity appeared to be independent of Ca2+. PKC-mediated phosphorylation of phospholamban was fully activated by 1 M Ca2+ whereas the Ca2+/calmodulin dependent kinase required concentrations in excess of 5 M Ca2+. In the in vitro system employed in these studies, the concentrations of either PKC or the catalytic subunit of PKA required to phosphorylate phospholamban were found to be similar. In addition, in the presence of a 15 kDa sarcolemmal-associated protein, which becomes phosphorylated upon activation of PKC in vivo, phosphorylation of phospholamban by PKC was unaffected. These results demonstrate that, although substrates for both subtypes are found in both junctional and free SR, PKC and PKC do not show differences in selectivity towards these substrates.Abbreviations Ca2+ free calcium - CaM kinase Ca2+/calmodulin-dependent protein kinase - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol bis(b-aminoethylether)-N,N,N,N-tetraacetic acid - FSR free sarcoplasmic reticulum - JSR junctional sarcoplasmic reticulum - PKC protein kinase C - PS phosphatidylserine - SDS sodium dodecyl sulfate - SAG 1-stearoyl-2-arachidonylglycerol - TPCK L-1-tosylamido-2-phenylethyl chloromethyl ketone - Tris/HCI tris(hydroxymethyl)aminomethane hydrochloride This work was supported by a grant (to S.K.) from the Heart and Stroke Foundation of B.C. and Yukon. The costs of publication of this article were defrayed in part by the payment of page charges This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.Recipient of a Studentship form the Heart and Stroke Foundation of Canada.  相似文献   
68.
The capacity of the oxidative pentose phosphate pathway (PPP) in the heart is limited, since the activity of glucose-6-phosphate dehydrogenase (G-6-PD), the first and regulating enzyme of this pathway, is very low. Two mechanisms are involved in the regulation of this pathway. Under normal conditions, G-6-PD is inhibited by NADPH. This can be overcome in the isolated perfused rat heart by increasing the oxidized glutathione and by elevating the NADP+/NADPH ratio. Besides this rapid control mechanism, there is a long-term regulation which involves the synthesis of G-6-PD. The activity of G-6-PD was elevated in the rat heart during the development of cardiac hypertrophy due to constriction of the abdominal aorta and in the non-ischemic part of the rat heart subsequent to myocardial infarction. The catecholamines isoproterenol and norepinephrine stimulated the activity of myocardial G-6-PD in a time- and dose-dependent manner. The isoproterenol-induced stimulation was cAMP-dependent and due to increased new synthesis of enzyme protein. The G-6-PD mRNA was elevated by norepinephrine. As a consequence of the stimulation of the oxidative PPP, the available pool of 5-phosphoribosyl-l-pyrophosphate (PRPP) was expanded. PRPP is an important precursor substrate for purine and pyrimidine nucleotide synthesis. The limiting step in the oxidative PPP, the G-6-PD reaction, can be bypassed with ribose. This leads to an elevation of the cardiac PRPP pool. The decline in ATP that is induced in many pathophysiological conditions was attenuated or even entirely prevented by i.v. infusion of ribose. In two in vivo rat models, the overloaded and catecholamine-stimulated heart and the infarcted heart, the normalization of the cardiac adenine nucleotide pool by ribose was accompanied by an improvement of global heart function. Combination of ribose with adenine or inosine in isoproterenol-treated rats was more effective to restore completely the cardiac ATP level within a short period of time than either intervention alone. (Mol Cell Biochem 160/161: 101–109, 1996)  相似文献   
69.
We investigated the effect of 10–8 M noradrenaline (NA) on [Ca2+], and electrical activity of single myocytes of guinea-pig ventricular myocardium loaded with Indo 1-AM. Membrane potential was recorded by means of the patch electrode and patch amplifier set to the current clamp mode. Cells were stimulated at a rate of 30/min by 3 ms pulses of the current injected through the recording electrode. Superfusion of NA resulted in slight shortening of action potentials (APs), increase in rate of rise and amplitude of the respective Ca2+ transients, and appearance of secondary Ca2+ transients of two kinds: 1. appearing before repolarisation of AP and decay of the preceding Ca2+ transient were completed and 2. appearing between the APs. We named them early after-transients (EAT) and delayed after-transients (DAT), respectively. Without any additional intervention EATS caused some prolongation of APs duration and DATs resulted in subthreshold delayed after-depolarisations (DADS). When sarcolemmal K+ conductance was decreased by tetraethylammonium (TEA) in the patch electrode or 20 M BaCl2 in the Tyrode solution, EATs initiated early after depolarizations (EADs) and DATs initiated suprathreshold DADs triggering full-sized APs. Superfusion of 30.0 mM Na+ (replaced with LiCl) resulted in reduction of AP duration by -70% and appearance of DATs. Also, the frequent multiple oscillations of Ca 2+ concentration were often observed. Neither DATs nor the oscillations had any affect on electrical activity of the cells. Their electrogenicity could not be increased by TEA or 20.0 M Ba2+. EATs and DATs and their respective EADs and DADs could not be initiated by NA or low Na+ superfusion in the cells pretreated with 2 × 10–7 M thapsigargin, a selective blocker of Ca2+-ATPase of sarcoplasmic reticulum (SR). We conclude that in contrast to the current hypothesis, EADs can be initiated by Ca2+ released early in the cardiac cycle from the overloaded SR, and that electrogenicity of both types of Ca2+ oscillations critically depends on the sarcolemmal K+ conductance.  相似文献   
70.
Although in vitro studies have shown that oxygen free radicals depress the sarcolemmal Ca2+-pump activity and thereby may cause the occurrence of intracellular Ca2+ overload for the genesis of contractile failure, the exact relationship between changes in sarcolemmal Ca2+-pump activity and cardiac function due to these radicals is not clear. In this study we examined the effects of oxygen radicals on sarcolemmal Ca2+ uptake and Ca2+-stimulated ATPase activities as well as contractile force development by employing isolated rat heart preparations. When hearts were perfused with medium containing xanthine plus xanthine oxidase, the sarcolemmal Ca2+-stimulated ATPase activity and ATP-dependent Ca2+ accumulation were depressed within 1 min whereas the developed contractile force, rate of contraction and rate of relaxation were increased at 1 min and decreased over 3–20 min of perfusion. The resting tension started increasing at 2 min of perfusion with xanthine plus xanthine oxidase. Catalase showed protective effects against these alterations in heart function and sarcolemmal Ca2+-pump activities upon perfusion with xanthine plus xanthine oxidase whereas superoxide dismutase did not exert such effects. The combination of catalase and superoxide dismutase did not produce greater effects in comparison to catalase alone. These results are consistent with the view that the depression of heart sarcolemmal Ca2+ pump activities may result in myocardial dysfunction due to the formation of hydrogen peroxide and/or hydroxyl radicals upon perfusing the hearts with xanthine plus xanthine oxidase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号