首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1180篇
  免费   89篇
  国内免费   22篇
  1291篇
  2024年   3篇
  2023年   19篇
  2022年   36篇
  2021年   47篇
  2020年   32篇
  2019年   45篇
  2018年   43篇
  2017年   30篇
  2016年   26篇
  2015年   40篇
  2014年   66篇
  2013年   105篇
  2012年   45篇
  2011年   34篇
  2010年   28篇
  2009年   46篇
  2008年   56篇
  2007年   52篇
  2006年   52篇
  2005年   47篇
  2004年   45篇
  2003年   37篇
  2002年   40篇
  2001年   17篇
  2000年   24篇
  1999年   27篇
  1998年   22篇
  1997年   13篇
  1996年   12篇
  1995年   18篇
  1994年   18篇
  1993年   19篇
  1992年   25篇
  1991年   17篇
  1990年   13篇
  1989年   18篇
  1988年   14篇
  1987年   11篇
  1986年   8篇
  1985年   10篇
  1984年   8篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1291条查询结果,搜索用时 15 毫秒
31.
The rapid emergence of new bacterial diseases negatively affects both human health and agricultural productivity. Although the molecular mechanisms underlying these disease emergences are shared between human‐ and plant‐pathogenic bacteria, not much effort has been made to date to understand disease emergences caused by plant‐pathogenic bacteria. In particular, there is a paucity of information in the literature on the role of environmental habitats in which plant‐pathogenic bacteria evolve and on the stress factors to which these microbes are unceasingly exposed. In this microreview, we focus on three molecular mechanisms underlying pathogenicity in bacteria, namely mutations, genomic rearrangements and the acquisition of new DNA sequences through horizontal gene transfer (HGT). We briefly discuss the role of these mechanisms in bacterial disease emergence and elucidate how the environment can influence the occurrence and regulation of these molecular mechanisms by directly impacting disease emergence. The understanding of such molecular evolutionary mechanisms and their environmental drivers will represent an important step towards predicting bacterial disease emergence and developing sustainable management strategies for crops.  相似文献   
32.
In what types of environments should we expect to find strong inbreeding depression? Previous studies indicate that inbreeding depression, δ, is positively correlated with the stressfulness of the environment in which it is measured. However, it remains unclear why stress, per se, should increase δ. To our knowledge, only “competitive stress” has a logical connection to δ. Through competition for resources, better quality (outbred) individuals make the environment worse for lower quality (inbred) individuals, accentuating the differences between them. For this reason, we expect inbreeding depression to be stronger in environments where the fitness of individuals is more sensitive to the presence of conspecifics (i.e., where fitness is more density dependent). Indeed, some studies suggest a role for competition within environments, but this idea has not been tested in the context of understanding variation in δ across environments. Using Drosophila melanogaster, we estimated δ for viability in 22 different environments. These environments were simultaneously characterized for (1) stressfulness and (2) density dependence. Although stress and density dependence are moderately correlated with each other, inbreeding depression is much more strongly correlated with density dependence. These results suggest that mean selection across the genome is stronger in environments where competition is intense, rather than in environments that are stressful for other reasons.  相似文献   
33.
The accumulation of somatic mutations in mtDNA is correlated with aging. In this work, we sought to identify somatic mutations in the HVS-1 region (D-loop) of mtDNA that might be associated with aging. For this, we compared 31 grandmothers (mean age: 63 ± 2.3 years) and their 62 grandchildren (mean age: 15 ± 4.1 years), the offspring of their daughters. Direct DNA sequencing showed that mutations absent in the grandchildren were detected in a presumably homoplasmic state in three grandmothers and in a heteroplasmic state in an additional 13 grandmothers; no mutations were detected in the remaining 15 grandmothers. However, cloning followed by DNA sequencing in 12 grandmothers confirmed homoplasia in only one of the three mutations previously considered to be homoplasmic and did not confirm heteroplasmy in three out of nine grandmothers found to be heteroplasmic by direct sequencing. Thus, of 12 grandmothers in whom mtDNA was analyzed by cloning, eight were heteroplasmic for mutations not detected in their grandchildren. In this study, the use of genetically related subjects allowed us to demonstrate the occurrence of age-related (> 60 years old) mutations (homoplasia and heteroplasmy). It is possible that both of these situations (homoplasia and heteroplasmy) were a long-term consequence of mitochondrial oxidative phosphorylation that can lead to the accumulation of mtDNA mutations throughout life.  相似文献   
34.
Paul Little  Li Hsu  Wei Sun 《Biometrics》2023,79(3):2705-2718
Somatic mutations in cancer patients are inherently sparse and potentially high dimensional. Cancer patients may share the same set of deregulated biological processes perturbed by different sets of somatically mutated genes. Therefore, when assessing the associations between somatic mutations and clinical outcomes, gene-by-gene analysis is often under-powered because it does not capture the complex disease mechanisms shared across cancer patients. Rather than testing genes one by one, an intuitive approach is to aggregate somatic mutation data of multiple genes to assess their joint association with clinical outcomes. The challenge is how to aggregate such information. Building on the optimal transport method, we propose a principled approach to estimate the similarity of somatic mutation profiles of multiple genes between tumor samples, while accounting for gene–gene similarities defined by gene annotations or empirical mutational patterns. Using such similarities, we can assess the associations between somatic mutations and clinical outcomes by kernel regression. We have applied our method to analyze somatic mutation data of 17 cancer types and identified at least five cancer types, where somatic mutations are associated with overall survival, progression-free interval, or cytolytic activity.  相似文献   
35.
Mutational changes in the promoter regions of MTHFR genes from patients with hyperhomocysteinemia and PTEN genes from patients with endometrial and ovarian tumors were studied. An increased level of homocysteine was found in a part of the patients with a heterozygous C677T mutation in the MTHFR gene, although a moderate hyperhomocysteinemia is usually associated with homozygous mutation. We hypothesized that, in this case, the allele lacking the C677T mutation may be inactivated by the promoter mutation. The sequencing of both DNA strands of the minimal promoter region of the MTHFR gene in ten patients did not reveal any mutation, which implied another mechanism of the development of hyperhomocysteinemia in these patients. A PCR analysis of the minimal promoter region of the tumor suppressor PTEN in the presence of 2-pyrrolidone in 101 patients from Moscow clinics revealed changes in it in patients with endometrial (56%) or ovarian (29%) cancer, as well as in patients with endometrial hyperplasia and benign ovarian tumors (34 and 29%, respectively). It was presumed that the found modification of PTEN gene promoters may arise from epigenetic alterations (erroneous methylation) or may (more rarely) be induced by mutations. As a result of the studies, new molecular markers associated with endometrial and ovarian tumors were revealed and a simple and effective method of detection of these markers was developed.  相似文献   
36.
The genotoxicity of reactive oxygen species (ROS) is well established. The underlying mechanism involves oxidation of DNA by ROS. However, we have recently shown that hydrogen peroxide (H2O2), the major mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant concentrations rapidly induces higher order chromatin degradation (HOCD), i.e. enzymatic excision of chromatin loops and their oligomers at matrix-attachment regions. The activation of endonuclease that catalyzes HOCD is a signalling event triggered specifically by H2O2. The activation is not mediated by an influx of calcium ions, but resting concentrations of intracellular calcium ions are required for the maintenance of the endonuclease in an active form. Although H2O2-induced HOCD can efficiently dismantle the genome leading to cell death, under sublethal oxidative stress conditions H2O2-induced HOCD may be the major source of somatic mutations.  相似文献   
37.
The structural integrity of cartilage depends on the presence of extracellular matrices (ECM) formed by heterotypic fibrils composed of collagen II, collagen IX, and collagen XI. The formation of these fibrils depends on the site-specific binding between relatively small regions of interacting collagen molecules. Single amino acid substitutions in collagen II change the physicochemical and structural characteristics of those sites, thereby leading to an alteration of intermolecular collagen II/collagen IX interaction. Employing a biosensor to study interactions between R75C, R789C or G853E collagen II mutants and collagen IX, we demonstrated significant changes in the binding affinities. Moreover, analyses of computer models representing mutation sites defined exact changes in physicochemical characteristics of collagen II mutants. Our study shows that changes in collagen II/collagen IX affinity could represent one of the steps in a cascade of changes occurring in the ECM of cartilage as a result of single amino acid substitutions in collagen II.  相似文献   
38.
Tumour-derived DNA found in the plasma of cancer patients provides the probability to detect somatic mutations from circulating cell-free DNA (cfDNA) in plasma samples. However, clonal hematopoiesis (CH) mutations affect the accuracy of liquid biopsy for cancer diagnosis and treatment. Here, we integrated landscape of CH mutations in 11,725 pan-cancer patients of Chinese and explored effects of CH on liquid biopsies in real-world. We first identified 5933 CHs based on panel sequencing of matched DNA of white blood cell and cfDNA on 301 genes for 5100 patients, in which CH number of patients had positive correlation with their diagnosis age. We observed that canonical genes related to CH, including DNMT3A, TET2, ASXL1, TP53, ATM, CHEK2 and SF3B1, were dominant in the Chinese cohort and 13.29% of CH mutations only appeared in the Chinese cohort compared with the Western cohort. Analysis of CH gene distribution bias indicated that CH tended to appear in genes with functions of tyrosine kinase regulation, PI3K-Akt signalling and TP53 activity, suggesting unfavourable effects of CH mutations in cancer patients. We further confirmed effect of driver genes carried by CH on somatic mutations in liquid biopsy of cancer patients. Forty-eight actionable somatic mutations in 17 driver genes were considered CH genes in 92 patients (1.80%) of the Chinese cohort, implying potential impacts of CH on clinical decision-making. Taken together, this study exhibits strong evidence that gene mutations from CH interfere accuracy of liquid biopsies using cfDNA in cancer diagnosis and treatment in real-world.  相似文献   
39.
Tyrosine kinase inhibitors for epidermal growth factor receptor (EGFR-TKIs) are used as molecular targeted therapy for non-small cell lung cancer (NSCLC) patients. The therapy is applied to the patients having EGFR-primary L858R mutation, but drug tolerance caused by EGFR-secondary mutation is occurred within one and half years. For the non-invasive detection of the EGFR-TKIs treatment positive patients by positron emission tomograpy (PET) imagaing, fluorine-18 labeled thienopyrimidine derivative, [18F]FTP2 was newly synthesized. EGFR inhibition assay, cell uptake study, and blocking study indicated [18F]FTP2 binds with high and selective affinity for EGFR with L858R mutation, and not with L858R/T790M dual mutations. On animal PET study using tumor bearing mice, H3255 cells expressing L858R mutated EGFR was more clearly visualized than H1975 cells expressing L858R/T790M dual mutated EGFR. [18F]FTP2 has potential for detecting NSCLC which is susceptible to EGFR-TKI treatment.  相似文献   
40.

Objective

Liquid‐based (LB)‐FNA is widely recognized as a reliable diagnostic method to evaluate thyroid nodules. However, up to 30% of LB‐FNA remain indeterminate according to the Bethesda system. Use of molecular biomarkers has been recommended to improve its pathological accuracy but implementation of these tests in clinical practice may be difficult. Here, we evaluated feasibility and performance of molecular profiling in routine practice by testing LB‐FNA for BRAF, N/HRAS and TERT mutations.

Methods

We studied a large prospective cohort of 326 cases, including 61 atypia of undetermined significance, 124 follicular neoplasms, 72 suspicious for malignancy and 69 malignant cases. Diagnosis of malignancy was confirmed by histology on paired surgical specimen.

Results

Mutated LB‐FNAs were significantly associated with malignancy regardless of the cytological classification. Overall sensitivity was 60% and specificity 89%. Importantly, in atypia of undetermined significance and follicular neoplasm patients undergoing surgery according to the Bethesda guidelines, negative predictive values were 85.4% and 90% respectively. TERT promoter mutation was rare but very specific for malignancy (5.5%) suggesting that it could be of interest in patients with indeterminate cytology.

Conclusions

Mutation profiling can be successfully performed on thyroid LB‐FNA without any dedicated sample in a pathology laboratory. It is an easy way to improve diagnostic accuracy of routine LB‐FNA and may help to better select patients for surgery and to avoid unnecessary thyroidectomies.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号