首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7536篇
  免费   397篇
  国内免费   222篇
  2024年   7篇
  2023年   81篇
  2022年   137篇
  2021年   166篇
  2020年   161篇
  2019年   251篇
  2018年   216篇
  2017年   157篇
  2016年   155篇
  2015年   201篇
  2014年   311篇
  2013年   474篇
  2012年   266篇
  2011年   310篇
  2010年   199篇
  2009年   248篇
  2008年   290篇
  2007年   336篇
  2006年   333篇
  2005年   336篇
  2004年   310篇
  2003年   284篇
  2002年   288篇
  2001年   246篇
  2000年   201篇
  1999年   153篇
  1998年   192篇
  1997年   197篇
  1996年   170篇
  1995年   152篇
  1994年   154篇
  1993年   143篇
  1992年   118篇
  1991年   119篇
  1990年   113篇
  1989年   122篇
  1988年   90篇
  1987年   68篇
  1986年   61篇
  1985年   80篇
  1984年   54篇
  1983年   29篇
  1982年   43篇
  1981年   30篇
  1980年   30篇
  1979年   27篇
  1978年   12篇
  1977年   12篇
  1976年   10篇
  1973年   5篇
排序方式: 共有8155条查询结果,搜索用时 265 毫秒
11.
  相似文献   
12.
Current agronomic cultivars of white lupin (Lupinus albus) are intolerant of calcareous or limed soils. In these soils, high pH, bicarbonate (HCO3?), and calcium (Ca) concentrations are the major chemical stresses to the root system. To determine the responses of the root system to these factors, evaluate root architecture, and compare genotypes for tolerance, a series of liquid culture experiments was completed using root chambers that allowed the study of the root system in two dimensions. Each stress condition caused changes in different parts of the root system and there was no generalised stress response. HCO3? (5 mM) had the greatest effect on cultivars intolerant of calcareous soil; it decreased the dry weight of the shoot and caused the highest percentage of tap root deaths. HCO3? also discriminated between short (determinate) and long (indeterminate) roots, as it decreased the number and density of the determinate roots only. Calcium (3 mM) affected all parts of the root system. The tap root was shortened and showed an increased tortuousness in its path compared with 1 mM Ca, although no plants suffered tap root death. The numbers and densities of the two lateral root forms were also decreased, as were the lengths of the indeterminate roots. Stress from alkaline pH (7.5) media caused a lower number and density of determinate lateral roots to be produced than at pH 6.5. The experiments demonstrated that each culture condition elicited a definable stress response. Stress conditions altered the root architecture of genotypes reported to be tolerant of calcareous soil less than in intolerant genotypes. Although soil is more complex than liquid culture, it is possible that in a calcareous or limed soil each stress condition examined may affect the overall stress of the plant, and increased tolerance may result from tolerance to a single stress.  相似文献   
13.
Sodium-induced calcium deficiency in salt-stressed corn   总被引:9,自引:5,他引:4  
Abstract The effect of the Na+/Ca2+ ratio in the root media on salt-stressed corn (Zea mays L. cvs DeKalb XL-75 and Pioneer 3906) was determined in greenhouse experiments. Plants grown in a complete nutrient solution salinized with 86.5 mol m?3 NaCl exhibited severe Ca2+ deficiency symptoms at the four-leaf stage. The symptoms disappeared when part of the NaCl was replaced with 10 mol m?3 CaCl2 (Na+/Ca2+ molar ratio = 5.7). Salt stress at an iso-osmotic potential of ?0.4 MPa substantially decreased shoot growth at all solution Na+/Ca2+ ratios from 34.6 to 0.26. However, the dry weights of blades at 26 d of age were much less when plants were salinized with NaCl alone, particularly that of DeKalb XL-75 which was more susceptible to Na-induced Ca2+ deficiency than was Pioneer 3906. The growth of sheaths was similarity reduced by sail stress at all Na+/Ca2+ ratios. The symptoms of Ca2+ deficiency were correlated with low Ca2+ concentrations in the leaf tissue. Ca2+ concentrations in the developing blades of NaCl-stressed plants were much lower than in control plants. As the Na+/Ca2+ ratio in the solution was decreased, Ca2+ levels increased in both the blades and sheaths while Na+ concentrations greatly decreased. DeKalb XL-75 was much less effective than Pioneer 3906 in restricting the uptake of Na+. The results clearly indicate that NaCl stress may cause lesions and unique plant responses that are not manifested on agronomic plants grown on saline soils.  相似文献   
14.
The rate constant of modification of a specific thiol group, SH2, with N-ethylmaleimide (NEM) has been used to estimate the conformational change in the local area containing SH2 (SH2 region) of skeletal myosin as a structural probe. The rate of Mg2+-ATP-induced SH2 modification of subfragment-1 (S-l) isozymes was regulated by Ca2+ in the pCa range below 6.4 and was not regulated in the pCa range above 6.4. No substantial difference between S-1 containing alkali light chain, A1, (S-1(A1)) and S-1 containing alkali light chain, A2, (S-1(A2)) was observed in the Ca2+-dependent rate of SH2 modification. Due to the presence of this Ca2+ regulation in myosin (absence in S-1 isozymes) in the pCa range above 6.4, absence of 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) light chain in S-1 isozymes, and high affinity of Ca2+ for DTNB light chain, this Ca2+ regulation in the pCa range above 6.4 is possibly related to the Ca2+ binding to DTNB light chain. F-Actin, which is entirely free from tropomyosin and troponin, enhanced the rate of Mg2+-ATP-induced SH2 modification of S-1 isozymes equally and of myosin, and reduced the Ca2+ sensitivity with an increase in F-actin concentration.  相似文献   
15.
The study was composed of 27 persons that displayed vague symptoms similar to those of the victims of Minamata and Iraq. Skew distributions of mercury were observed in individual erythrocytes and neutrophil granulocytes when measured by PIXE. Mercury could not be detected in the platelets. The erythrocytes also displayed lowered concentrations of magnesium and zinc, together with increased concentrations of calcium and strontium. The neutrophils displayed decreased concentrations of magnesium and zinc and increased concentrations of calcium, strontium, and iron. The presence of mercury and the altered elemental profiles in the erythrocytes and the neutrophil granulocytes are suggested as early signs of exposure.  相似文献   
16.
A particle-induced X-ray emission (PIXE) analysis method is presented, which allows measurement of eight elements (i.e., K, Ca, Mn, Fe, Cu, Zn, Se, and Rb) in human brain samples of only a few mg dry weight. The precision and accuracy of the method were investigated by analyzing animal brain matter with both PIXE and instrumental neutron activation analysis (INAA). The method was applied to measure the 8 elements in 46 different regions of 3 human brains. The sections analyzed originated from either the left or the right cerebral hemisphere, brain stem, and cerebellum. For one of the brains, sections were also analyzed from 26 corresponding regions of both hemispheres. For all elements, similar concentrations were found in the corresponding areas of the left and right sides of the brain. The concentrations (in μg/g dry weight) of the elements K, Fe, Cu, Zn, Se, and Rb were consistently higher in cortical structures than in white matter. Deep nuclei and brain stem, which have a mixed composition, showed intermediate values for K, Zn, Se, and Rb. A hierarchical cluster analysis indicated that the various brain regions clustered into two large groups, one comprising gray and mixed matter regions and the other, white and mixed matter brain areas.  相似文献   
17.
Interactions between the physiologically essential metals calcium, magnesium, and zinc and the carcinogenic metals nickel and cadmium were investigated to help elucidate the mechanisms of action of the carcinogenic metals. Bioassay studies revealed several significant findings, including: (1) the ability of magnesium and calcium to inhibit nickel-induced elevation of pulmonary adenoma incidence in strain A mice; (2) the ability of magnesium, but not of calcium, to prevent cadmium-induced subcutaneous sarcoma formation; and (3) the ability of magnesium, but not of calcium, to inhibit nickel-induced muscle tumor formation. Biochemical studies indicated a direct relationship between the antitumorigenic potential of magnesium and the capacity of this metal to: (1) inhibit nickel and cadmium uptake by the target tissues in vivo; (2) inhibit nickel-induced disturbances in DNA synthesis in vivo; (3) inhibit nuclear and cytosolic uptake of nickel by the target tissue cells in vivo; and (4) inhibit nickel and cadmium binding to DNA in vitro. Calcium, which in most cases did not prevent carcinogenesis, had no consistent influence on the uptake of carcinogenic metals or their biochemical effects in the target tissues. Magnesium and zinc, but not calcium, were also found to attenuate the acute toxic effects of nickel, indicating a possible correlation between prevention of acute effects and reduction in tumorigenicity. Zinc, which antagonizes cadmium tumorigenicity in the rat testis, was found to reduce markedly cadmium uptake into isolated testicular interstitial cells. Also, zinc was found to inhibit strongly cadmium binding to DNA in vitro.  相似文献   
18.
Intracellular crystals of aragonite have been identified by selected area electron diffraction (SAED) in a species of the freshwater filamentous alga Spirogyra from the Thames River, Ontario, Canada. The crystals are 2 to 24 μm in diameter, and characterized by a unique cross-shaped morphology, in which needle-like, or prismatic outgrowths develop from a common axis. Crystals may be dispersed throughout filaments, but tend to cluster as aggregates towards the centre .  相似文献   
19.
Foliar litterfall nutrient concentrations were analysed for selected members of Taxodiaceae and Cupressaceae families andPseudotsuga menziesii for two arboreta in western Oregon and Washington. Nutrient results between arboreta show similar concentrations with the exception of magnesium, which may be the result of historical land use. Nutrient concentrations between species vary considerably.Pseudotsuga menziesii is particularly distinctive from the Cupressaceae and Taxodiaceae by retaining large amounts of phosphorus and potassium. Taxodiaceae is distinctive by high concentration of Mg while Cupressaceae retains calcium, especiallyChamaecyparis nootkatensis. Results suggest that all members of Taxodiaceae and Cupressaceae retain considerably more Ca than Pinaceae in foliar litter.  相似文献   
20.
Summary Four monoclonal antibodies against the calcium ATPase in sarcoplasmic reticulum (SR) of rabbit fast-twitch skeletal muscle were characterized using SDS-PAGE, Western blots and immunofluorescence. The ultrastructural distribution of the antigens was determined using post-embedding immunolabeling. The antibodies recognized the calcium ATPase in the SR but not in transverse (T-) tubule or plasma membranes. The antibody, D12, had the same binding affinity for the calcium ATPase from fast-twitch (rabbit sternomastoid) and slow-twitch (rabbit soleus) fibers and the affinity fell by 30% after fixation for electron microscopy in both types of muscle fiber. Ultrastructural studies revealed that the density of D12 antibody binding to the terminal cisternae membrane of extensor digitorum longus (edl) and sternomastoid fibers was on average seven times greater than in the slow-twitch soleus and semimembranosus fibers. Since the affinity of the ATPase for the antibody was the same in SR from fast- and slow-twitch muscles, the concentration of calcium ATPase in the terminal cisternae membrane of fast-twitch fibers was seven times greater than in slow-twitch fibers. This conclusion was supported by the fact that the concentration of calcium ATPase in light SR membranes was six times greater in SR from fast-twitch fibers than in SR from slow-twitch fibers. The results provide strong evidence that the different calcium accumulation rates in mammalian fast- and slow-twitch muscles are due to different concentrations of calcium ATPase molecules in the SR membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号