全文获取类型
收费全文 | 2421篇 |
免费 | 171篇 |
国内免费 | 47篇 |
专业分类
2639篇 |
出版年
2024年 | 3篇 |
2023年 | 35篇 |
2022年 | 51篇 |
2021年 | 69篇 |
2020年 | 77篇 |
2019年 | 75篇 |
2018年 | 91篇 |
2017年 | 37篇 |
2016年 | 57篇 |
2015年 | 70篇 |
2014年 | 130篇 |
2013年 | 150篇 |
2012年 | 93篇 |
2011年 | 108篇 |
2010年 | 94篇 |
2009年 | 107篇 |
2008年 | 95篇 |
2007年 | 119篇 |
2006年 | 108篇 |
2005年 | 99篇 |
2004年 | 98篇 |
2003年 | 107篇 |
2002年 | 126篇 |
2001年 | 98篇 |
2000年 | 71篇 |
1999年 | 71篇 |
1998年 | 59篇 |
1997年 | 38篇 |
1996年 | 28篇 |
1995年 | 20篇 |
1994年 | 26篇 |
1993年 | 23篇 |
1992年 | 28篇 |
1991年 | 16篇 |
1990年 | 17篇 |
1989年 | 23篇 |
1988年 | 13篇 |
1987年 | 9篇 |
1986年 | 12篇 |
1985年 | 8篇 |
1984年 | 13篇 |
1983年 | 10篇 |
1982年 | 15篇 |
1981年 | 14篇 |
1980年 | 5篇 |
1979年 | 5篇 |
1978年 | 6篇 |
1976年 | 5篇 |
1975年 | 2篇 |
1973年 | 3篇 |
排序方式: 共有2639条查询结果,搜索用时 15 毫秒
101.
In a recent study we investigated the complex mechanisms regulating the pollen release via thigmonastic stamen movement found exclusively in Loasaceae subfamily Loasoideae. We demonstrated that stamen movement is modulated by abiotic (light and temperature) as well as biotic stimuli (pollinator availability and visitation frequency). This is explained as a mechanism to adjust the rate of stamen movement and thus pollen dispensation to different environmental conditions in order to optimize pollen transfer. Stamen movement is rapid and thus a near-immediate response to pollinator visits. However, Loasaceae flowers also show a response to biotic stimuli on a longer time scale, by adjusting the duration of both the staminate and the carpellate phase of the anthesis. We here present two additional data sets on species not previously studied, underscoring the shortening of the staminate phase in the presence of pollinator visits vs. their absence and the shortening of the carpellate phase after pollination. Overall, the plant shows not only a rapid but an “intelligent” reaction to its environment in adjusting anthesis and pollen presentation to a range of factors. The physiological and morphological bases of the stamen movement are poorly understood. Our previous study showed that there is no direct spatial relationship between the place of stimulation in the flower and the stamen bundle activated. We here further show the morphological basis for stamen movement from a reflexed into an erect position: Only the basal part of the filament curves around the receptacle, while the upper part of the filament retains its shape. We hypothesize that the stimulus is transmitted over the entire receptacle and the place of reaction is determined by stamen maturity, not the location of the stimulus. 相似文献
102.
《Cell Adhesion & Migration》2013,7(3):280-284
Integrin receptors play important roles in cell adhesion and tumor metastasis. The coupling of mechanical sensing and biochemical ligation is known to collectively regulate the activation of integrin receptors. Recently, oligomerization of activated integrins has been considered as the primordial signature of cytoskeletal remodeling and the initiation of various downstream signals, such as focal and fibrillar adhesions. However, spatio-temporal reorganization of activated integrins and associated proteins remains poorly understood. Here, we summarized the recent discovery of sequential biophysical events of integrin activation during early adhesion formation. Using the cyclic Arg-Gly-Asp (RGD) peptide as a mobile ligand on supported lipid membranes, a series of previously unreported events were observed following integrin αvβ3 clustering and cell spreading, including a long-range lateral translocation of the integrin clusters. With initial clustering, localized actin polymerization occurred in a Src family kinase dependent manner. Clustering of liganded integrins recruits various adaptor proteins and serves as a reaction core for mechanobiological activities. In addition, there are future possibilities to investigate the role of other synergetic interactions with the activated integrin receptors. 相似文献
103.
Jessica C. Nelson Andrea K.H. Stavoe Daniel A. Colón-Ramos 《Cell Adhesion & Migration》2013,7(4):379-387
Dramatic morphogenetic processes underpin nearly every step of nervous system development, from initial neuronal migration and axon guidance to synaptogenesis. Underlying this morphogenesis are dynamic rearrangements of cytoskeletal architecture. Here we discuss the roles of the actin cytoskeleton in the development of presynaptic terminals, from the elaboration of terminal arbors to the recruitment of presynaptic vesicles and active zone components. The studies discussed here underscore the importance of actin regulation at every step in neuronal circuit assembly. 相似文献
104.
《Journal of molecular biology》2022,434(24):167879
Cardiac myosin binding protein C (cMyBP-C) modulates cardiac contraction via direct interactions with cardiac thick (myosin) and thin (actin) filaments (cTFs). While its C-terminal domains (e.g. C8-C10) anchor cMyBP-C to the backbone of the thick filament, its N-terminal domains (NTDs) (e.g. C0, C1, M, and C2) bind to both myosin and actin to accomplish its dual roles of inhibiting thick filaments and activating cTFs. While the positions of C0, C1 and C2 on cTF have been reported, the binding site of the M-domain on the surface of the cTF is unknown. Here, we used cryo-EM to reveal that the M-domain interacts with actin via helix 3 of its ordered tri-helix bundle region, while the unstructured part of the M-domain does not maintain extensive interactions with actin. We combined the recently obtained structure of the cTF with the positions of all the four NTDs on its surface to propose a complete model of the NTD binding to the cTF. The model predicts that the interactions of the NTDs with the cTF depend on the activation state of the cTF. At the peak of systole, when bound to the extensively activated cTF, NTDs would inhibit actomyosin interactions. In contrast, at falling Ca2+ levels, NTDs would not compete with the myosin heads for binding to the cTF, but would rather promote formation of active cross-bridges at the adjacent regulatory units located at the opposite cTF strand. Our structural data provides a testable model of the cTF regulation by the cMyBP-C. 相似文献
105.
Gu C Yaddanapudi S Weins A Osborn T Reiser J Pollak M Hartwig J Sever S 《The EMBO journal》2010,29(21):3593-3606
The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin-capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin-CPs. 相似文献
106.
Bobkov AA Muhlrad A Pavlov DA Kokabi K Yilmaz A Reisler E 《Journal of molecular biology》2006,356(2):325-334
Using site-specific fluorescence probes and cross-linking we demonstrated that cofilin (ADF), a key regulator of actin cellular dynamics, weakens longitudinal contacts in F-actin in a cooperative manner. Differential scanning calorimetry detected a dual nature of cofilin effects on F-actin conformation. At sub-stoichiometric cofilin to actin ratios, cofilin stabilized sterically and non-cooperatively protomers at the points of attachment, and destabilized allosterically and cooperatively protomers in the cofilin-free parts of F-actin. This destabilizing effect had a long range, with one cofilin molecule affecting more than 100 protomers, and concentration-dependent amplitude that reached maximum at about 1:2 molar ratio of cofilin to actin. In contrast to existing models, our results suggest an allosteric mechanism of actin depolymerization by cofilin. We propose that cofilin is less likely to sever actin filaments at the points of attachment as thought previously. Instead, due to its dual structural effect, spontaneous fragmentation occurs most likely in cofilin-free segments of filaments weakened allosterically by nearby cofilin molecules. 相似文献
107.
Detailed residue-wise interactions involved in the binding of myosin to actin in the rigor conformation without nucleotides have been examined using molecular dynamics simulations of the chicken skeletal myosin head complexed with two actin monomers, based on the cryo-microscopic model of Holmes et al. (Nature 2003;425:423-427). The overall interaction is largely electrostatic in nature, because of the charged residues in the four loops surrounding the central primary binding site. The 50k/20k loop, disordered in crystal structures and in simulations of free myosin in solution, was found to be in a conformation stabilized with 1 - 2 internal salt bridges. The cardiomyopathy loop forms 2 - 3 interprotein salt bridges with actin monomers upon binding, whereas its Arg405 residue, the mutation site associated with the hypertrophic cardiomyopathy, forms a strong salt bridge with Glu605 in the neighboring helix away from actin in the actin-bound myosin. The myopathy loop of the R405Q mutant maintains a high degree of two-strand beta-sheet character when bound to actin with the corresponding salt bridges broken. 相似文献
108.
Phytophthora capsici homologue of the cell cycle regulator SDA1 is required for sporangial morphology,mycelial growth and plant infection 下载免费PDF全文
SDA1 encodes a highly conserved protein that is widely distributed in eukaryotic organisms. SDA1 is essential for cell cycle progression and organization of the actin cytoskeleton in yeasts and humans. In this study, we identified a Phytophthora capsici orthologue of yeast SDA1, named PcSDA1. In P. capsici, PcSDA1 is strongly expressed in three asexual developmental states (mycelium, sporangia and germinating cysts), as well as late in infection. Silencing or overexpression of PcSDA1 in P. capsici transformants affected the growth of hyphae and sporangiophores, sporangial development, cyst germination and zoospore release. Phalloidin staining confirmed that PcSDA1 is required for organization of the actin cytoskeleton. Moreover, 4′,6‐diamidino‐2‐phenylindole (DAPI) staining and PcSDA1‐green fluorescent protein (GFP) fusions revealed that PcSDA1 is involved in the regulation of nuclear distribution in hyphae and sporangia. Both silenced and overexpression transformants showed severely diminished virulence. Thus, our results suggest that PcSDA1 plays a similar role in the regulation of the actin cytoskeleton and nuclear division in this filamentous organism as in non‐filamentous yeasts and human cells. 相似文献
109.
Julian Brenig Susanne de Boor Philipp Knyphausen Nora Kuhlmann Sarah Wroblowski Linda Baldus Lukas Scislowski Oliver Artz Philip Trauschies Ulrich Baumann Ines Neundorf Michael Lammers 《The Journal of biological chemistry》2015,290(23):14314-14327
Diaphanous-related formins are eukaryotic actin nucleation factors regulated by an autoinhibitory interaction between the N-terminal RhoGTPase-binding domain (mDiaN) and the C-terminal Diaphanous-autoregulatory domain (DAD). Although the activation of formins by Rho proteins is well characterized, its inactivation is only marginally understood. Recently, liprin-α3 was shown to interact with mDia1. Overexpression of liprin-α3 resulted in a reduction of the cellular actin filament content. The molecular mechanisms of how liprin-α3 exerts this effect and counteracts mDia1 activation by RhoA are unknown. Here, we functionally and structurally define a minimal liprin-α3 core region, sufficient to recapitulate the liprin-α3 determined mDia1-respective cellular functions. We show that liprin-α3 alters the interaction kinetics and thermodynamics of mDiaN with RhoA·GTP and DAD. RhoA displaces liprin-α3 allosterically, whereas DAD competes with liprin-α3 for a highly overlapping binding site on mDiaN. Liprin-α3 regulates actin polymerization by lowering the regulatory potency of RhoA and DAD on mDiaN. We present a model of a mechanistically unexplored and new aspect of mDiaN regulation by liprin-α3. 相似文献
110.
Yukifumi Uesono Akio Toh-e Yoshiko Kikuchi Tomoyuki Araki Takushi Hachiya Chihiro K. Watanabe Ko Noguchi Ichiro Terashima 《Genetics》2016,202(3):997-1012
Action mechanisms of anesthetics remain unclear because of difficulty in explaining how structurally different anesthetics cause similar effects. In Saccharomyces cerevisiae, local anesthetics and antipsychotic phenothiazines induced responses similar to those caused by glucose starvation, and they eventually inhibited cell growth. These drugs inhibited glucose uptake, but additional glucose conferred resistance to their effects; hence, the primary action of the drugs is to cause glucose starvation. In hxt0 strains with all hexose transporter (HXT) genes deleted, a strain harboring a single copy of HXT1 (HXT1s) was more sensitive to tetracaine than a strain harboring multiple copies (HXT1m), which indicates that quantitative reduction of HXT1 increases tetracaine sensitivity. However, additional glucose rather than the overexpression of HXT1/2 conferred tetracaine resistance to wild-type yeast; therefore, Hxts that actively transport hexoses apparently confer tetracaine resistance. Additional glucose alleviated sensitivity to local anesthetics and phenothiazines in the HXT1m strain but not the HXT1s strain; thus, the glucose-induced effects required a certain amount of Hxt1. At low concentrations, fluorescent phenothiazines were distributed in various membranes. At higher concentrations, they destroyed the membranes and thereby delocalized Hxt1-GFP from the plasma membrane, similar to local anesthetics. These results suggest that the aforementioned drugs affect various membrane targets via nonspecific interactions with membranes. However, the drugs preferentially inhibit the function of abundant Hxts, resulting in glucose starvation. When Hxts are scarce, this preference is lost, thereby mitigating the alleviation by additional glucose. These results provide a mechanism that explains how different compounds induce similar effects based on lipid theory. 相似文献