首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2864篇
  免费   310篇
  国内免费   31篇
  3205篇
  2024年   14篇
  2023年   80篇
  2022年   74篇
  2021年   138篇
  2020年   187篇
  2019年   182篇
  2018年   112篇
  2017年   113篇
  2016年   114篇
  2015年   147篇
  2014年   163篇
  2013年   200篇
  2012年   136篇
  2011年   175篇
  2010年   140篇
  2009年   144篇
  2008年   171篇
  2007年   162篇
  2006年   103篇
  2005年   90篇
  2004年   90篇
  2003年   76篇
  2002年   72篇
  2001年   52篇
  2000年   35篇
  1999年   38篇
  1998年   26篇
  1997年   23篇
  1996年   18篇
  1995年   17篇
  1994年   25篇
  1993年   20篇
  1992年   15篇
  1991年   7篇
  1990年   10篇
  1989年   7篇
  1988年   10篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
排序方式: 共有3205条查询结果,搜索用时 15 毫秒
31.
Ten years ago we showed for the first time that Notch signalling is required in segmentation in spiders, indicating the existence of similar mechanisms in arthropod and vertebrate segmentation. However, conflicting results in various arthropod groups hampered our understanding of the ancestral function of Notch in arthropod segmentation. Here we fill a crucial data gap in arthropods and analyse segmentation in a crustacean embryo. We analyse the expression of homologues of the Drosophila and vertebrate segmentation genes and show that members of the Notch signalling pathway are expressed at the same time as the pair-rule genes. Furthermore, inactivation of Notch signalling results in irregular boundaries of the odd-skipped-like expression domains and affects the formation of segments. In severe cases embryos appear unsegmented. We suggest two scenarios for the function of Notch signalling in segmentation. The first scenario agrees with a segmentation clock involving Notch signalling, while the second scenario discusses an alternative mechanism of Notch function which is integrated into a hierarchical segmentation cascade.  相似文献   
32.

Background

Diallyl mono- and polysulfanes from garlic are known to induce an adaptive cell response and the formation of antioxidants in cancer cells. In the case of a severe ER stress and a failure in the response, cancer cells eventually go into apoptosis. Only little is known about the response of normal cells upon treatment.

Methods

Normal ARPE-19 cells were treated with diallyl tetrasulfide to study their cellular response and the results were compared with those of HCT116 cancer cells. Cell viability was checked by an MTT assay and cytofluorimetry. The formation of superoxide radicals, H2O2 and thiols were determined and proteins involved in the ER stress response were also detected by Western blot analysis.

Results

We found that diallyl tetrasulfide induced reactive oxygen species (ROS) in normal cells similar to cancer cells in a time (0 to 60 min) and dose dependent manner (0 to 50 μM). The level of heme oxigenase-1 (HO-1) was up-regulated in both cell types. Initially, we found a decrease in the total thiol level in both cell types but in contrast to cancer cells, normal cells recovered from the decrease in the total thiol concentration within 60 min of treatment.

Conclusions

The recovery of the thiol concentration in normal cells treated with diallyl tetrasulfide seems to be responsible for the failure to induce the ER stress signalling pathway and finally apoptosis in normal cells.

General Significance

The difference in the recovery of the thiol status might be an explanation for the anti-carcinogenic effects of garlic compounds.  相似文献   
33.
34.
35.
Metastasis is the primary cause of death in prostate cancer (PCa) patients. Effective therapeutic intervention in metastatic PCa is undermined by our poor understanding of its molecular aetiology. Defining the mechanisms underlying PCa metastasis may lead to insights into how to decrease morbidity and mortality in this disease. Glyoxalase 1 (Glo1) is the detoxification enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). Hydroimidazolone (MG‐H1) and argpyrimidine (AP) are AGEs originating from MG‐mediated post‐translational modification of proteins at arginine residues. AP is involved in the control of epithelial to mesenchymal transition (EMT), a crucial determinant of cancer metastasis and invasion, whose regulation mechanisms in malignant cells are still emerging. Here, we uncover a novel mechanism linking Glo1 to the maintenance of the metastatic phenotype of PCa cells by controlling EMT by engaging the tumour suppressor miR‐101, MG‐H1‐AP and TGF‐β1/Smad signalling. Moreover, circulating levels of Glo1, miR‐101, MG‐H1‐AP and TGF‐β1 in patients with metastatic compared with non‐metastatic PCa support our in vitro results, demonstrating their clinical relevance. We suggest that Glo1, together with miR‐101, might be potential therapeutic targets for metastatic PCa, possibly by metformin administration.  相似文献   
36.
Upon severe DNA damage, p21 acts in a dual mode; on the one hand, it inhibits the cyclin-CDK complex for arresting the G2/M transition and on the other hand, it indirectly becomes an apoptotic factor by activating - in sequence - the retinoblastoma protein, E2F1 and APAF1 expressions. But, in a cancer cells proliferation, the mechanisms of, and participants in, the apoptosis failure remain unclear. Since the p21/p53/Mdm2 proteins network normally involves a digital response in a cancer cell, through an original design of a cell signalling-protein simulator, we demonstrate,in silico, that apoptosis phase instability is fully reciprocated by p21mRNA irregular dynamics which operates according to a "tracking memory" principle. We show p21mRNA paradoxically ceases to act in concert with specific target genes and becomes an underlying accomplice of cancer proliferation. Here, we also identify the mechanisms for allowing the cancer cell to re-enter inside a steady stable apoptosis phase.  相似文献   
37.
The proteolytic cleavage of a precursor protein into alpha- and beta-subunits by furin is required to form functional insulin receptor (IR). In this study, we examined if IR undergoes the additional presenilin (PS)/gamma-secretase-dependent processing. In cells treated with gamma-secretase inhibitors or expressing the dominant-negative PS1 variant led to the accumulation of an endogenous IR C-terminal fragment. In the presence of proteasome inhibitors, we detected a PS/gamma-secretase cleavage product of the IR, termed the IR intracellular domain (ICD). Cellular fractionation and confocal microscopy analyses showed that the IR-ICD is predominantly detected in the nucleus. These data indicate that IR is a tyrosine kinase receptor, which undergoes PS/gamma-secretase-dependent processing. We also show that the autophosphorylation levels of the IR beta-subunit upon insulin stimulation were decreased by the inactivation of PS/gamma-secretase, raising the possibility that the PS/gamma-secretase proteolysis of IR may play a modulatory role in insulin signaling.  相似文献   
38.
Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates.  相似文献   
39.
The endosymbiotic relationship between cnidarians and photosynthetic dinoflagellate algae provides the foundation of coral reef ecosystems. This essential interaction is globally threatened by anthropogenic disturbance. As such, it is important to understand the molecular mechanisms underpinning the cnidarian–algal association. Here we investigated phosphorylation‐mediated protein signalling as a mechanism of regulation of the cnidarian–algal interaction, and we report on the generation of the first phosphoproteome for the coral model system Aiptasia. Mass spectrometry‐based phosphoproteomics using data‐independent acquisition allowed consistent quantification of over 3,000 phosphopeptides totalling more than 1,600 phosphoproteins across aposymbiotic (symbiont‐free) and symbiotic anemones. Comparison of the symbiotic states showed distinct phosphoproteomic profiles attributable to the differential phosphorylation of 539 proteins that cover a broad range of functions, from receptors to structural and signal transduction proteins. A subsequent pathway enrichment analysis identified the processes of “protein digestion and absorption,” “carbohydrate metabolism,” and “protein folding, sorting and degradation,” and highlighted differential phosphorylation of the “phospholipase D signalling pathway” and “protein processing in the endoplasmic reticulum.” Targeted phosphorylation of the phospholipase D signalling pathway suggests control of glutamate vesicle trafficking across symbiotic compartments, and phosphorylation of the endoplasmic reticulum machinery suggests recycling of symbiosome‐associated proteins. Our study shows for the first time that changes in the phosphorylation status of proteins between aposymbiotic and symbiotic Aiptasia anemones may play a role in the regulation of the cnidarian–algal symbiosis. This is the first phosphoproteomic study of a cnidarian–algal symbiotic association as well as the first application of quantification by data‐independent acquisition in the coral field.  相似文献   
40.
This study aimed to explore the underlying mechanism of linc01014 in oesophagus cancer gefitinib resistance. Gefitinib‐resistant oesophagus squamous cell carcinoma (ESCC gefitinibR) cell lines were constructed by using different gefitinib treatment in FLO‐1, KYAE‐1, TE‐8 and TE‐5 cell lines and confirmed by MTS50 and proliferation assays. Expression of linc01014 was overexpressed/silenced in FLO‐1 cells followed by gefitinib treatment, and then, the apoptosis‐associated markers Bax and Bcl‐2, and PI3KCA in PI3K signalling pathway were determined using Western blotting. MST50 and morphology analyses showed that ESCC gefitinibR cell lines presented obvious gefitinib resistance than their parental ESCC cell lines. ESCC gefitinibR cell lines showed significantly higher proliferation abilities than their parental ESCC cell lines after treating with gefitinib. Overexpression of linc01014 significantly inhibited the apoptosis of FLO‐1 cells induced by gefitinib and silencing linc01014 obviously promoted the apoptosis of FLO‐1 cells induced by gefitinib. Silencing linc01014 could significantly increase the gefitinib chemotherapy sensitivity of oesophagus cancer via PI3K‐AKT‐mTOR signalling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号