全文获取类型
收费全文 | 43669篇 |
免费 | 3119篇 |
国内免费 | 2048篇 |
专业分类
48836篇 |
出版年
2024年 | 95篇 |
2023年 | 797篇 |
2022年 | 1106篇 |
2021年 | 1511篇 |
2020年 | 1449篇 |
2019年 | 1942篇 |
2018年 | 1605篇 |
2017年 | 1092篇 |
2016年 | 1211篇 |
2015年 | 1570篇 |
2014年 | 2393篇 |
2013年 | 3116篇 |
2012年 | 1700篇 |
2011年 | 2166篇 |
2010年 | 1589篇 |
2009年 | 1865篇 |
2008年 | 1883篇 |
2007年 | 1993篇 |
2006年 | 1778篇 |
2005年 | 1695篇 |
2004年 | 1516篇 |
2003年 | 1315篇 |
2002年 | 1302篇 |
2001年 | 1095篇 |
2000年 | 915篇 |
1999年 | 836篇 |
1998年 | 790篇 |
1997年 | 734篇 |
1996年 | 694篇 |
1995年 | 658篇 |
1994年 | 617篇 |
1993年 | 564篇 |
1992年 | 548篇 |
1991年 | 510篇 |
1990年 | 391篇 |
1989年 | 397篇 |
1988年 | 363篇 |
1987年 | 297篇 |
1986年 | 249篇 |
1985年 | 311篇 |
1984年 | 399篇 |
1983年 | 225篇 |
1982年 | 297篇 |
1981年 | 287篇 |
1980年 | 223篇 |
1979年 | 206篇 |
1978年 | 147篇 |
1977年 | 102篇 |
1976年 | 111篇 |
1974年 | 47篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
《Free radical research》2013,47(2):55-66
The lipid peroxidation product 4-hydroxynonenal (HNE) and homologous aldehydes have been found to possess chemotactic activity for rat neutrophil leukocytes in the micromolar to picomolar range, depending on the compound. Such an activity is displayed only in the presence of albumin. The mechanisms by which aldehydes could interact with neutrophils are discussed. II is proposed that albumin acts as a carrier for the aldehyde and releases them to a neutrophil receptor. At concentrations around 10?4M, 4-hydroxyal-kenals have been found to exert toxic effects on a number of cells, including a strong depression of neutrophil motility. Finally, HNE has been found at chemotactic concentrations in the inflammatory site. The possibility that HNE is involved in the neutrophil influx into the inflammatory site is considered. 相似文献
992.
《Channels (Austin, Tex.)》2013,7(5):385-386
Changes in intracellular calcium regulate countless biological processes. In arterial smooth muscle, voltage-dependent L-type calcium channels are major conduits for calcium entry with the primary function being determination of arterial diameter. Similarly, changes in intracellular redox status, either discrete controlled changes or global pathological perturbations, are also critical determinants of cell function. We recently reported that in arterial smooth muscle cells, local generation of hydrogen peroxide leads to colocalized calcium entry through L-type calcium channels. Here we extend our investigation into mechanisms linking hydrogen peroxide to calcium influx through L-type calcium channels by focusing on the role of protein kinase C (PKC). Our data indicate that stimulation of L-type calcium channels by hydrogen peroxide requires oxidant-dependent increases in PKC catalytic activity. This effect is independent of classical cofactor-dependent activation of PKC by diacylglycerol. These data provide additional experimental evidence supporting the concept of oxidative stimulation of L-type calcium channels. 相似文献
993.
《Channels (Austin, Tex.)》2013,7(6):509-518
Oscillations in intracellular free Ca2+ concentration ([Ca2+]i) have been observed in a variety of cell types. In the present study, we constructed a mathematical model to simulate the caffeine-induced [Ca2+]i oscillations based on experimental data obtained from isolated type I horizontal cell of carp retina. The results of model analysis confirm the notion that the caffeine-induced [Ca2+]i oscillations involve a number of cytoplasmic and endoplasmic Ca2+ processes that interact with each other. Using this model, we evaluated the importance of store-operated channel (SOC) in caffeine-induced [Ca2+]i oscillations. The model suggests that store-operated Ca2+ entry (SOCE) is elicited upon depletion of the endoplasmic reticulum (ER). When the SOC conductance is set to 0, caffeine-induced [Ca2+]i oscillations are abolished, which agrees with the experimental observation that [Ca2+]i oscillations were abolished when SOC was blocked pharmacologically, verifying that SOC is necessary for sustained [Ca2+]i oscillations. 相似文献
994.
《Cell cycle (Georgetown, Tex.)》2013,12(17):3270-3279
Osteopetrosis, a disorder of skeletal bone, can cause death during childhood. We previously described a new spontaneous autosomal recessive osteopetrosis mouse mutant, “new toothless” (ntl). In this study, we reported for the first time the identification, cloning and characterization of the coiled-coil domain-containing 154 (CCDC154), a novel gene whose deletion of ~5 kb sequence including exons 1–6 was completely linked to the ntl mutant. The CCDC154 was conserved between mouse and human and is wildly expressed in mouse tissues. The cellular localization of CCDC154 was in the early endosomes. Overexpression of CCDC154 inhibited cell proliferation of HEK293 cells by inducing G2/M arrest. CCDC154 also inhibited tumor cell growth, and the soft agar assay revealed a significant decrease of the colony size of Hela cells upon transfection of CCDC154. Our results indicate that CCDC154 is a novel osteopetrosis-related gene involved in cell cycle regulation and tumor suppression growth. 相似文献
995.
《Cell cycle (Georgetown, Tex.)》2013,12(20):3317-3328
Cell migration is dependent on a series of integrated cellular events including the membrane recycling of the extracellular matrix receptor integrins. In this paper, we investigate the role of autophagy in regulating cell migration. In a wound-healing assay, we observed that autophagy was reduced in cells at the leading edge than in cells located rearward. These differences in autophagy were correlated with the robustness of MTOR activity. The spatial difference in the accumulation of autophagic structures was not detected in rapamycin-treated cells, which had less migration capacity than untreated cells. In contrast, the knockdown of the autophagic protein ATG7 stimulated cell migration of HeLa cells. Accordingly, atg3?/? and atg5?/? MEFs have greater cell migration properties than their wild-type counterparts. Stimulation of autophagy increased the co-localization of β1 integrin-containing vesicles with LC3-stained autophagic vacuoles. Moreover, inhibition of autophagy slowed down the lysosomal degradation of internalized β1 integrins and promoted its membrane recycling. From these findings, we conclude that autophagy regulates cell migration, a central mechanism in cell development, angiogenesis, and tumor progression, by mitigating the cell surface expression of β1 integrins. 相似文献
996.
Lisa M. Weatherly Rachel H. Kennedy Juyoung Shim Julie A. Gosse 《Journal of visualized experiments : JoVE》2013,(81)
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here.Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential. 相似文献
997.
《Seminars in cell & developmental biology》2013,24(5):490-498
The mechanosensory hair cells of the inner ear have emerged as one of the primary models for studying the development of planar polarity in vertebrates. Planar polarity is the polarized organization of cells or cellular structures in the plane of an epithelium. For hair cells, planar polarity is manifest at the subcellular level in the polarized organization of the stereociliary bundle and at the cellular level in the coordinated orientation of stereociliary bundles between adjacent cells. This latter organization is commonly called Planar Cell Polarity and has been described in the greatest detail for auditory hair cells of the cochlea. A third level of planar polarity, referred to as tissue polarity, occurs in the utricular and saccular maculae; two inner ear sensory organs that use hair cells to detect linear acceleration and gravity. In the utricle and saccule hair cells are divided between two groups that have opposite stereociliary bundle polarities and, as a result, are able to detect movements in opposite directions. Thus vestibular hair cells are a unique model system for studying planar polarity because polarization develops at three different anatomical scales in the same sensory organ. Moreover the system has the potential to be used to dissect functional interactions between molecules regulating planar polarity at each of the three levels. Here the significance of planar polarity on vestibular system function will be discussed, and the molecular mechanisms associated with development of planar polarity at each anatomical level will be reviewed. Additional aspects of planar polarity that are unique to the vestibular maculae will also be introduced. 相似文献
998.
The dairy industry is a multi-billion dollar industry catering the nutritional needs of all age groups globally through the supply of milk. Clinical mastitis has a severe impact on udder tissue and is also an animal welfare issue. Moreover, it significantly reduces animal value and milk production. Mammary tissue damage reduces the number and activity of epithelial cells and consequently contributes to decreased milk production. The high incidence, low cure rate of this highly economic and sometimes deadly disease is an alarming for dairy sector as well as policy makers. Bovine mammary epithelial cells (MECs) and their stem cells are very important in milk production and bioengineering. The adult mammary epithelium consists of two main cell types; an inner layer of luminal epithelial cells, which produce the milk during lactation, and an outer layer of myoepithelial cells resting on a basement membrane, which are responsible for pushing the milk through the ductal network to the teat cistern. Inner layer of columner/luminal cells of bovine MECs, is characterized by cytokeratin18, 19 (CK18, CK19) and outer layer such as myoepithelial cells which are characterized by CK14, α-smooth muscle actin (α-SMA) and p63. Much work has been done in mouse and human, on mammary gland stem cell research, particularly in cancer therapy, but stem cell research in bovine is still in its infancy. Such stem/progenitor cell discoveries in human and mouse mammary gland bring some hope for application in bovines. These progenitors may be therapeutically adopted to correct the structural/cytological defects in the bovine udder due to mastitis. In the present review we focused on various kinds of stem/progenitor cells which can have therapeutic utility and their possibilities to use as a potential stem cell therapy in the management of bovine post-mastitis damage in orders to restore milk production. The possibilities of bovine mammary stem cell therapy offers significant potential for regeneration of tissues that can potentially replace/repair diseased and damaged tissue through differentiation into epithelial, myoepithelial and/or cuboidal/columnar cells in the udder with minimal risk of rejection and side effects. 相似文献
999.
PER.C6 cells were cultivated for propagation of a replication-defective adenovirus vector in serum-free suspension bioreactors. Cellular metabolism during cell growth and adenovirus propagation was fully characterized using on-line and off-line methods. The energy metabolism was found to accelerate transiently after adenovirus infection with increases in glucose and oxygen consumption rates. Similar to other mammalian cells, glucose utilization was highly inefficient and a high lactate:glucose yield was observed, both before and after virus infection. A higher consumption of most of the essential amino acids was observed transiently after the infection, likely due to increased protein synthesis requirements for virus propagation. To improve virus propagation, a medium exchange strategy was implemented to increase PER.C6 cell concentration for infection. During cell growth, a 50% increase in glucose consumption and lactate production rates was observed after initiation of the medium exchange in comparison to the batch phase. This decrease in medium capacity only affected the central carbon metabolism and no increase in amino acid consumption was observed. In addition, even though cell concentrations of up to 10 x 10(6) cells/mL were reproducibly obtained by medium exchange, infections at cell concentrations higher than 1 x 10(6) cells/mL did not proportionally improve volumetric adenovirus productivities. No measured nutrient limitation was observed at those high cell concentrations, indicating that adenovirus cell-specific productivity at higher cell concentrations is highly dependent on cell physiology. These results provide a better understanding of PER.C6 cellular metabolism and a basis for intensifying PER.C6 growth and adenovirus propagation. 相似文献
1000.
Shuanghong Lü Ying Li Shaorong Gao Sheng Liu Haibin Wang Wenjun He Jin Zhou Zhiqiang Liu Ye Zhang Qiuxia Lin Cumi Duan Xiangzhong Yang Changyong Wang 《Journal of cellular and molecular medicine》2010,14(12):2771-2779
The concept of regenerating diseased myocardium by implanting engineered heart tissue (EHT) is intriguing. Yet it was limited by immune rejection and difficulties to be generated at a size with contractile properties. Somatic cell nuclear transfer is proposed as a practical strategy for generating autologous histocompatible stem (nuclear transferred embryonic stem [NT‐ES]) cells to treat diseases. Nevertheless, it is controversial as NT‐ES cells may pose risks in their therapeutic application. EHT from NT‐ES cell‐derived cardiomyocytes was generated through a series of improved techniques in a self‐made mould to keep the EHTs from contraction and provide static stretch simultaneously. After 7 days of static and mechanical stretching, respectively, the EHTs were implanted to the infarcted rat heart. Four weeks after transplantation, the suitability of EHT in heart muscle repair after myocardial infarction was evaluated by histological examination, echocardiography and multielectrode array measurement. The results showed that large (thickness/diameter, 2–4 mm/10 mm) spontaneously contracting EHTs was generated successfully. The EHTs, which were derived from NT‐ES cells, inte grated and electrically coupled to host myocardium and exerted beneficial effects on the left ventricular function of infarcted rat heart. No teratoma formation was observed in the rat heart implanted with EHTs for 4 weeks. NT‐ES cells can be used as a source of seeding cells for cardiac tissue engineering. Large contractile EHT grafts can be constructed in vitro with the ability to survive after implantation and improve myocardial performance of infarcted rat hearts. 相似文献