首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   855篇
  免费   30篇
  国内免费   161篇
  2024年   1篇
  2023年   9篇
  2022年   10篇
  2021年   9篇
  2020年   15篇
  2019年   27篇
  2018年   15篇
  2017年   19篇
  2016年   18篇
  2015年   14篇
  2014年   18篇
  2013年   76篇
  2012年   17篇
  2011年   32篇
  2010年   41篇
  2009年   40篇
  2008年   48篇
  2007年   47篇
  2006年   35篇
  2005年   31篇
  2004年   45篇
  2003年   37篇
  2002年   48篇
  2001年   42篇
  2000年   37篇
  1999年   46篇
  1998年   34篇
  1997年   20篇
  1996年   15篇
  1995年   7篇
  1994年   15篇
  1993年   12篇
  1992年   9篇
  1991年   14篇
  1990年   14篇
  1989年   8篇
  1988年   18篇
  1987年   26篇
  1986年   9篇
  1985年   5篇
  1984年   12篇
  1983年   9篇
  1982年   6篇
  1981年   7篇
  1980年   6篇
  1979年   6篇
  1978年   2篇
  1977年   9篇
  1976年   5篇
  1973年   1篇
排序方式: 共有1046条查询结果,搜索用时 31 毫秒
51.
Herbaspirillum seropedicae is an endophytic diazotroph associated with economically important crops such as rice, sugarcane, and wheat. Here, we present a 2-D reference map for H. seropedicae. Using MALDI-TOF-MS we identified 205 spots representing 173 different proteins with a calculated average of 1.18 proteins/gene. Seventeen hypothetical or conserved hypothetical ORFs were shown to code for true gene products. These data will support the genome annotation process and provide a basis on which to undertake comparative proteomic studies.  相似文献   
52.
浓度高于毫摩尔级的铯离子即可对一般的微生物产生毒害作用。迄今为止,研究发现多株可以耐受铯离子的细菌,一些细菌耐受铯离子的浓度甚至超过200毫摩尔,这对于揭示细菌耐受铯离子机制,开展微生物修复铯污染环境具有重要意义。本文系统总结在筛选耐受铯离子细菌方面的研究进展,探讨这些菌株耐受高浓度铯离子的分子机制,展望利用微生物进行铯污染环境修复的前景,以期为探索放射性铯污染环境的微生物生态修复提供参考。  相似文献   
53.
Abstract Enrichment cultures for anoxygenic phototrophs capable of using cinnamic acid as sole organic carbon source consistently yielded the nonsulfur purple bacterium Rhodopseudomonas palustris . Pure cultures of R. palustris obtained from the enrichments grew photoheterotrophically on cinnamate and benzoate as well as on derivatives of these compounds. Photosynthetic growth on cinnamate was greatly stimulated by addition of exogenous CO2, and resulted in breakage of the aromatic nucleus. Growth yield studies suggested that cinnamate was converted by R. palustris to intermediates that can be quantitatively assimilated into cell material.  相似文献   
54.
A bacterium that utilizes cyanide as a nitrogen source was isolated from soil after enrichment in a liquid medium containing potassium cyanide (10mM) and glucose (1.0%, w/v). The strain could tolerate and grow in potassium cyanide at concentrations of up to 25mM. It could also utilize potassium cyanate, potassium thiocyanate, linamarin and a range of aliphatic and aromatic nitriles. The isolate was tentatively identified as Burkholderia cepacia strain C-3. Ammonia and formic acid were found in the culture supernatant of the strain grown on fructose and potassium cyanide, no formamide was detected, suggesting a hydrolytic pathway for the degradation of cyanide. The cyanide-degrading activity was higher in early and the stationary phase cells. Crude cell extracts of strain C-3 grown on nutrient broth exhibited cyanide-degrading activity. The characteristics of strain C-3 suggest that it would be useful in the bioremediation of cyanide-containing waste.  相似文献   
55.
Magnetite-producing magnetotactic bacteria collected from the oxic–anoxic transition zone of chemically stratified marine environments characterized by O2/H2S inverse double gradients, contained internal S-rich inclusions resembling elemental S globules, suggesting they oxidize reduced S compounds that could support autotrophy. Two strains of marine magnetotactic bacteria, MV-1 and MV-2, isolated from such sites grew in O2-gradient media with H2S or thiosulfate (S2O32–) as electron sources and O2 as electron acceptor or anaerobically with S2O32– and N2O as electron acceptor, with bicarbonate (HCO3)/CO2 as sole C source. Cells grown with H2S contained S-rich inclusions. Cells oxidized S2O32– to sulfate (SO42–). Both strains grew microaerobically with formate. Neither grew microaerobically with tetrathionate (S4O62–), methanol, or Fe2+ as FeS, or siderite (FeCO3). Growth with S2O32– and radiolabeled 14C-HCO3 showed that cell C was derived from HCO3/CO2. Cell-free extracts showed ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Southern blot analyses indicated the presence of a form II RubisCO (cbbM) but no form I (cbbL) in both strains. cbbM and cbbQ, a putative post-translational activator of RubisCO, were identified in MV-1. MV-1 and MV-2 are thus chemolithoautotrophs that use the Calvin–Benson–Bassham pathway. cbbM was also identified in Magnetospirillum magnetotacticum. Thus, magnetotactic bacteria at the oxic–anoxic transition zone of chemically stratified aquatic environments are important in C cycling and primary productivity.  相似文献   
56.
To clarify the deactivation mechanism of pyruvate formate-lyase (PFL) and its role in the regulation of fermentation in Streptococcus bovis, the molecular properties and genetic expression of multifunctional alcohol dehydrogenase (ADHE) were investigated. S. bovis was found to have ADHE, which was deduced to consist of 872 amino acids with a molecular mass of 97.4 kDa. The ADHE was shown to harbor three enzyme activities: (1) alcohol dehydrogenase, (2) coenzyme-A-linked acetaldehyde dehydrogenase that catalyzes the conversion of acetyl-CoA to ethanol, and (3) PFL deactivase. Similar to Escherichia coli ADHE, S. bovis ADHE required Fe2+ for its activity. The gene encoding ADHE ( adhE) was shown to be monocistronic. The level of adhE mRNA changed in parallel with the mRNA levels of the genes encoding PFL (pfl) and PFL-activating enzyme (act) as the growth conditions changed, although these genes are independently transcribed. Synthesis of ADHE, PFL-activating enzyme, and PFL appears to be regulated concomitantly. Overexpression of ADHE did not cause a change in the formate-to-lactate ratio. It is conceivable that ADHE is not significantly involved in the reversible inactivation of active PFL under anoxic conditions. Partition of the flow from pyruvate appears to be mainly regulated by the activities of lactate dehydrogenase and PFL.  相似文献   
57.
Xylella fastidiosa, a fastidious bacterium causing disease in over 100 plant species, is classified as a single species, although genetic studies support multiple taxons. To determine the taxonomic relatedness among strains of X. fastidiosa, we conducted DNA-DNA relatedness assays and sequenced the 16S-23S intergenic spacer (ITS) region using 26 strains from 10 hosts. Under stringent conditions (Tm -15 degrees C), the DNA relatedness for most X. fastidiosa strains was *70%. However, at high stringency (Tm -8 degrees C), three distinct genotypes (A, B, and C) were revealed. Taxon A included strains from cultivated grape, alfalfa, almond (two), and maple, interrelated by 85% (mean); taxon B included strains from peach, elm, plum, pigeon grape, sycamore, and almond (one), interrelated by 84%; and taxon C included only strains from citrus, interrelated by 87%. The mean reciprocal relatedness between taxons A and B, A and C, and B and C, were 58, 41, and 45%, respectively. ITS results also indicated the same grouping; taxons A and B, A and C, and B and C had identities of 98.7, 97.9, and 99.2%, respectively. Previous and present phenotypic data supports the molecular data. Taxon A strains grow faster on Pierce's disease agar medium whereas B and C strains grow more slowly. Taxon B and C strains are susceptible to penicillin and resistant to carbenicillin whereas A strains are opposite. Each taxon can be differentiated serologically as well as by structural proteins. We propose taxons A, B, and C be named X. fastidiosa subsp. fastidiosa [correction] subsp. nov, subsp. multiplex, subsp. nov., and subsp. pauca, subsp. nov., respectively. The type strains of the subspecies are subsp. fastidiosa [correction] ICPB 50025 (= ATTC 35879T and ICMP 15197), subsp. multiplex ICPB 50039 (= ATTC 35871 and ICMP 15199), and subsp. pauca ICPB 50031 (= ICMP 15198).  相似文献   
58.
A Gram-positive, motile, endospore-forming and rod-shaped halophilic bacterial strain MSS-155 (KCTC 3788 and KCCM 41687) was isolated from a marine solar saltern of the Yellow Sea in Korea and was subjected to a polyphasic taxonomic study. This organism grew at temperature of 10.0–42.0°C with an optimum of 35°C. Strain MSS-155 grew optimally in the presence of 10% NaCl and did not grow in the absence of NaCl. The cell wall peptidoglycan type of strain MSS-155 was A4 based on l-Orn-d-Asp. Strain MSS-155 was also characterized chemotaxonomically by having menaquinone-7 (MK-7) as the predominant isoprenoid quinone and anteiso-C15:0 as the major fatty acid. The DNA G+C content was 44.0 mol%. Phylogenetic analysis based on 16S rDNA sequences showed that strain MSS-155 falls within the radiation of the cluster comprising Halobacillus species. Levels of 16S rDNA sequence similarity between strain MSS-155 and the type strains of four Halobacillus species were in the range 97.6–98.8%. Strain MSS-155 exhibited levels of DNA-DNA relatedness of 6.2–11.2% to the type strains of Halobacillus species described previously. On the basis of phenotypic properties, phylogeny, and genomic data, strain MSS-155 should be placed in the genus Halobacillus as a member of a novel species, for which we propose the name Halobacillus locisalis sp. nov.Communicated by W.D. Grant  相似文献   
59.
A rapid, sensitive, and convenient method for detecting a specific bacterium was developed by using a GFP phage. Here we describe a model system that utilizes the temperate Escherichia coli-restricted bacteriophage lambda, which was genetically modified to express a reporter gene for GFP to identify the colon bacillus E. coli in the specimen. E. coli infected with GFP phage was detected by GFP fluorescence after 4-6 hr of incubation. The results show that a few bacteria in a specimen can be detected under fluorescence microscopy equipped with a sensitive cooled CCD camera. When E. coli and Mycobacterium smegmatis were mixed in a solution containing GFP phage, only E. coli was infected, indicating the specificity of this method. The method has the following advantages: 1) Bacteria from biological samples need not be purified unless they contain fluorescent impurities; 2) The infection of GFP phage to bacteria is specific; 3) The fluorescence of GFP within infected bacteria enables highly sensitive detection; 4) Exogenous substrates and cofactors are not required for fluorescence. Therefore this method is suitable for any phage-bacterium system when bacteria-specific phages are available.  相似文献   
60.
It was found that Pseudoalteromonas citrea strains KMM 3296 and KMM 3298 isolated from the brown algae Fucus evanescens and Chorda filum, respectively, and strain 3297 isolated from the sea cucumber Apostichopus japonicus are able to degrade fucoidans. The fucoidanases of these strains efficiently degraded the fucoidan of brown algae at pH 6.5–7.0 and remained active at 40–50°C. The endo-type hydrolysis of fucoidan resulted in the formation of sulfated -L-fucooligosaccharides. The other nine strains of P. citrea studied (including the type strain of this species), which were isolated from other habitats, were not able to degrade fucoidan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号