首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1549篇
  免费   97篇
  国内免费   80篇
  2024年   15篇
  2023年   77篇
  2022年   103篇
  2021年   123篇
  2020年   102篇
  2019年   97篇
  2018年   86篇
  2017年   45篇
  2016年   33篇
  2015年   46篇
  2014年   97篇
  2013年   117篇
  2012年   79篇
  2011年   64篇
  2010年   43篇
  2009年   60篇
  2008年   58篇
  2007年   63篇
  2006年   35篇
  2005年   37篇
  2004年   24篇
  2003年   19篇
  2002年   14篇
  2001年   25篇
  2000年   13篇
  1999年   10篇
  1998年   20篇
  1997年   16篇
  1996年   22篇
  1995年   14篇
  1994年   19篇
  1993年   11篇
  1992年   16篇
  1991年   16篇
  1990年   12篇
  1989年   6篇
  1988年   8篇
  1987年   11篇
  1986年   9篇
  1985年   14篇
  1984年   14篇
  1983年   5篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   5篇
  1977年   1篇
  1975年   3篇
  1973年   3篇
排序方式: 共有1726条查询结果,搜索用时 54 毫秒
51.
Regenerative therapies including stem cell treatments hold promise to allow curing patients affected by severe cardiac muscle diseases. However, the clinical efficacy of stem cell therapy remains elusive, so far. The two key roadblocks that still need to be overcome are the poor cell engraftment into the injured myocardium and the limited knowledge of the ideal mixture of bioactive factors to be locally delivered for restoring heart function. Thus, therapeutic strategies for cardiac repair are directed to increase the retention and functional integration of transplanted cells in the damaged myocardium or to enhance the endogenous repair mechanisms through cell-free therapies. In this context, biomaterial-based technologies and tissue engineering approaches have the potential to dramatically impact cardiac translational medicine. This review intends to offer some consideration on the cell-based and cell-free cardiac therapies, their limitations and the possible future developments.  相似文献   
52.
Glioblastoma (GBM) is a malignant intracranial tumour with the highest proportion and lethality. It is characterized by invasiveness and heterogeneity. However, the currently available therapies are not curative. As an essential environmental cue that maintains glioma stem cells, hypoxia is considered the cause of tumour resistance to chemotherapy and radiation. Growing evidence shows that immunotherapy focusing on the tumour microenvironment is an effective treatment for GBM; however, the current clinicopathological features cannot predict the response to immunotherapy and provide accurate guidance for immunotherapy. Based on the ESTIMATE algorithm, GBM cases of The Cancer Genome Atlas (TCGA) data set were classified into high‐ and low‐immune/stromal score groups, and a four‐gene tumour environment‐related model was constructed. This model exhibited good efficiency at forecasting short‐ and long‐term prognosis and could also act as an independent prognostic biomarker. Additionally, this model and four of its genes (CLECL5A, SERPING1, CHI3L1 and C1R) were found to be associated with immune cell infiltration, and further study demonstrated that these four genes might drive the hypoxic phenotype of perinecrotic GBM, which affects hypoxia‐induced glioma stemness. Therefore, these might be important candidates for immunotherapy of GBM and deserve further exploration.  相似文献   
53.
Water splitting requires development of cost‐effective multifunctional materials that can catalyze both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) efficiently. Currently, the OER relies on the noble‐metal catalysts; since with other catalysts, its operation environment is greatly limited in alkaline conditions. Herein, an advanced water oxidation catalyst based on metallic Co9S8 decorated with single‐atomic Mo (0.99 wt%) is synthesized (Mo‐Co9S8@C). It exhibits pronounced water oxidization activity in acid, alkali, and neutral media by showing positive onset potentials of 200, 90, and 290 mV, respectively, which manifests the best Co9S8‐based single‐atom Mo catalyst till now. Moreover, it also demonstrates excellent HER performance over a wide pH range. Consequently, the catalyst even outperforms noble metal Pt/IrO2‐based catalysts for overall water splitting (only requiring 1.68 V in acid, and 1.56 V in alkaline). Impressively, it works under a current density of 10 mA cm?2 with no obvious decay during a 24 h (0.5 m H2SO4) and 72 h (1.0 m KOH) durability experiment. Density functional theory (DFT) simulations reveal that the synergistic effects of atomically dispersed Mo with Co‐containing substrates can efficiently alter the binding energies of adsorbed intermediate species and decrease the overpotentials of the water splitting.  相似文献   
54.
Extracellular vesicles (EVs) are abundant, lipid‐enclosed vectors that contain nucleic acids and proteins, they can be secreted from donor cells and freely circulate, and they can be engulfed by recipient cells thus enabling systemic communication between heterotypic cell types. However, genetic tools for labeling, isolating, and auditing cell type‐specific EVs in vivo, without prior in vitro manipulation, are lacking. We have used CRISPR‐Cas9‐mediated genome editing to generate mice bearing a CD63‐emGFPloxP/stop/loxP knock‐in cassette that enables the specific labeling of circulating CD63+ vesicles from any cell type when crossed with lineage‐specific Cre recombinase driver mice. As proof‐of‐principle, we have crossed these mice with Cdh5‐CreERT2 mice to generate CD63emGFP+ vasculature. Using these mice, we show that developing vasculature is marked with emerald GFP (emGFP) following tamoxifen administration to pregnant females. In adult mice, quiescent vasculature and angiogenic vasculature (in tumors) is also marked with emGFP. Moreover, whole plasma‐purified EVs contain a subpopulation of emGFP+ vesicles that are derived from the endothelium, co‐express additional EV (e.g., CD9 and CD81) and endothelial cell (e.g., CD105) markers, and they harbor specific miRNAs (e.g., miR‐126, miR‐30c, and miR‐125b). This new mouse strain should be a useful genetic tool for generating cell type‐specific, CD63+ EVs that freely circulate in serum and can subsequently be isolated and characterized using standard methodologies.  相似文献   
55.
转化生长因子β(transforming growth factorβ,TGF-β)是一种多功能的细胞因子,能够调控细胞增殖、分化、黏附、迁移及凋亡等行为,在胚胎发育过程和成体组织稳态维持中发挥重要的作用。而在许多疾病状态下,特别是在癌症中,TGF-β不仅能够影响肿瘤细胞的增殖与转移,其对于肿瘤微环境的调控与塑造也受到越来越多的关注。肿瘤微环境是指肿瘤在发生和发展过程中所处的内环境,由肿瘤细胞本身、相邻正常组织中的间质细胞,以及这些细胞所释放的众多细胞因子等共同组成。肿瘤微环境是肿瘤发展的重要机制,也是肿瘤临床治疗领域亟待探索的关键问题。TGF-β是调节肿瘤微环境组成和功能的主要参与者之一。在本综述中,将着重讨论TGF-β对于肿瘤微环境中的免疫监视机制及肿瘤细胞外基质的主要影响。即TGF-β对于构成先天性和获得性抗肿瘤免疫应答的各种类群的免疫细胞具有广泛的调控作用,从而削弱宿主的肿瘤免疫监视功能。同时,TGF-β通过促进肿瘤相关成纤维细胞的产生,以及肿瘤细胞外基质的纤维化,有助于肿瘤的恶变和转移。此外,还介绍了通过阻断肿瘤微环境中TGF-β信号通路进行肿瘤治疗的主要策略及独特优势。而未来进一步解析TGF-β信号在肿瘤微环境中的复杂调控作用,并建立有效的靶向干预方法对于开发高效的抗肿瘤药物具有重要的意义。  相似文献   
56.
Targeting the SMAD3 protein is an attractive therapeutic strategy for treating cancer, as it avoids the potential toxicities due to targeting the TGF-β signaling pathway upstream. Compound SIS3 was the first selective SMAD3 inhibitor developed that had acceptable activity, but its poor water solubility limited its development. Here, a series of SIS3 analogs was created to investigate the structure–activity relationship for inhibiting the activation of SMAD3. On the basis of this SAR, further optimization generated a water-soluble compound, 16d, which was capable of effectively blocking SMAD3 activation in vitro and had similar NK cell-mediated anticancer effects in vivo to its parent SIS3. This study not only provided a preferable lead compound, 16d, for further drug discovery or a potential tool to study SMAD3 biology, but also proved the effectiveness of our strategy for water-solubility driven optimization.  相似文献   
57.
58.
59.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
60.
Despite their simple body plan, stony corals (order Scleractinia, phylum Cnidaria) can produce massive and complex exoskeletal structures in shallow, tropical and subtropical regions of Earth’s oceans. The species-specific macromorphologies of their aragonite skeletons suggest a highly coordinated biomineralization process that is rooted in their genomes, and which has persisted across major climatic shifts over the past 400 + million years. The mechanisms by which stony corals produce their skeletons has been the subject of interest for at least the last 160 years, and the pace of understanding the process has increased dramatically in the past decade since the sequencing of the first coral genome in 2011. In this review, we detail what is known to date about the genetic basis of the stony coral biomineralization process, with a focus on advances in the last several years as well as ways that physical and chemical tools can be combined with genetics, and then propose next steps forward for the coming decade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号