首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1551篇
  免费   96篇
  国内免费   82篇
  1729篇
  2024年   16篇
  2023年   77篇
  2022年   105篇
  2021年   123篇
  2020年   102篇
  2019年   97篇
  2018年   86篇
  2017年   45篇
  2016年   33篇
  2015年   46篇
  2014年   97篇
  2013年   117篇
  2012年   79篇
  2011年   64篇
  2010年   43篇
  2009年   60篇
  2008年   58篇
  2007年   63篇
  2006年   35篇
  2005年   37篇
  2004年   24篇
  2003年   19篇
  2002年   14篇
  2001年   25篇
  2000年   13篇
  1999年   10篇
  1998年   20篇
  1997年   16篇
  1996年   22篇
  1995年   14篇
  1994年   19篇
  1993年   11篇
  1992年   16篇
  1991年   16篇
  1990年   12篇
  1989年   6篇
  1988年   8篇
  1987年   11篇
  1986年   9篇
  1985年   14篇
  1984年   14篇
  1983年   5篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   5篇
  1977年   1篇
  1975年   3篇
  1973年   3篇
排序方式: 共有1729条查询结果,搜索用时 0 毫秒
31.
32.
Cigarette smoke has been directly implicated in the disease pathogenesis of a plethora of different human cancer subtypes, including breast cancers. The prevailing view is that cigarette smoke acts as a mutagen and DNA damaging agent in normal epithelial cells, driving tumor initiation. However, its potential negative metabolic effects on the normal stromal microenvironment have been largely ignored. Here, we propose a new mechanism by which carcinogen-rich cigarette smoke may promote cancer growth, by metabolically “fertilizing” the host microenvironment. More specifically, we show that cigarette smoke exposure is indeed sufficient to drive the onset of the cancer-associated fibroblast phenotype via the induction of DNA damage, autophagy and mitophagy in the tumor stroma. In turn, cigarette smoke exposure induces premature aging and mitochondrial dysfunction in stromal fibroblasts, leading to the secretion of high-energy mitochondrial fuels, such as L-lactate and ketone bodies. Hence, cigarette smoke induces catabolism in the local microenvironment, directly fueling oxidative mitochondrial metabolism (OXPHOS) in neighboring epithelial cancer cells, actively promoting anabolic tumor growth. Remarkably, these autophagic-senescent fibroblasts increased breast cancer tumor growth in vivo by up to 4-fold. Importantly, we show that cigarette smoke-induced metabolic reprogramming of the fibroblastic stroma occurs independently of tumor neo-angiogenesis. We discuss the possible implications of our current findings for the prevention of aging-associated human diseases and, especially, common epithelial cancers, as we show that cigarette smoke can systemically accelerate aging in the host microenvironment. Finally, our current findings are consistent with the idea that cigarette smoke induces the “reverse Warburg effect,” thereby fueling “two-compartment tumor metabolism” and oxidative mitochondrial metabolism in epithelial cancer cells.  相似文献   
33.
Although phenotypic intratumoral heterogeneity was first described many decades ago, the advent of next-generation sequencing has provided conclusive evidence that in addition to phenotypic diversity, significant genotypic diversity exists within tumors. Tumor heterogeneity likely arises both from clonal expansions, as well as from differentiation hierarchies existent in the tumor, such as that established by cancer stem cells (CSCs) and non-CSCs. These differentiation hierarchies may arise due to genetic mutations, epigenetic alterations, or microenvironmental influences. An additional differentiation hierarchy within epithelial tumors may arise when only a few tumor cells trans-differentiate into mesenchymal-like cells, a process known as epithelial-to-mesenchymal transition (EMT). Again, this process can be influenced by both genetic and non-genetic factors. In this review we discuss the evidence for clonal interaction and cooperation for tumor maintenance and progression, particularly with respect to EMT, and further address the far-reaching effects that tumor heterogeneity may have on cancer therapy.  相似文献   
34.
The major cellular components of tumor microenvironment, referred to as the cancer stroma, are composed of cancer-associated fibroblasts that support tumor epithelial growth, invasion and therapeutic resistance. Thus when we speak of developing therapies that address tumor heterogeneity it is not only a matter of different mutations within the tumor epithelia. While individual mutations in the stromal compartment are controversial, the heterogeneity in fibroblastic population in a single tumor is not up for debate. Cooperative interaction among heterotypic fibroblasts and tumor cells contribute to cancer progression. Therefore to tackle solid tumors, we need to understand its complex microenvironment. Here we review some seminal developments in the field of tumor microenvironment, mainly focusing on cancer-associated fibroblast.  相似文献   
35.
《Organogenesis》2013,9(3):289-298
A recent paper demonstrated that decellularized extracellular matrix (DECM) deposited by synovium-derived stem cells (SDSCs), especially from fetal donors, could rejuvenate human adult SDSCs in both proliferation and chondrogenic potential, in which expanded cells and corresponding culture substrate (such as DECM) were found to share a mutual reaction in both elasticity and protein profiles (see ref. 1 Li J, Hansen K, Zhang Y, Dong C, Dinu C, Dzieciatkowska M, Pei M. Rejuvenation of chondrogenic potential in a young stem cell microenvironment. Biomaterials 2014; 35:642-53; PMID: 24148243; http://dx.doi.org/10.1016/j.biomaterials.2013.09.099[Crossref], [PubMed], [Web of Science ®] [Google Scholar]). It seems that young DECM may assist in the development of culture strategies that optimize proliferation and maintain “stemness” of mesenchymal stem cells (MSCs), helping to overcome one of the primary difficulties in MSC-based regenerative therapies. In this paper, the effects of age on the proliferative capacity and differentiation potential of MSCs are reviewed, along with the ability of DECM from young cells to rejuvenate old cells. In an effort to highlight some of the potential molecular mechanisms responsible for this phenomenon, we discuss age-related changes to extracellular matrix (ECM)'s physical properties and chemical composition.  相似文献   
36.
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney tumor. Previous studies have shown that the interaction between tumor cells and microenvironment has an important impact on prognosis. Immune and stromal cells are two vital components of the tumor microenvironment. Our study aimed to better understand and explore the genes involved in immune/stromal cells on prognosis. We used the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data algorithm to calculate immune/stromal scores. According to the scores, we divided ccRCC patients from The Cancer Genome Atlas database into low and high groups and identified the genes which were differentially expressed and significantly associated with prognosis. The result of functional enrichment analysis and protein-protein interaction networks indicated that these genes mainly were involved in extracellular matrix and regulation of cellular activities. Then another independent cohort from the International Cancer Genome Consortium database was used to validate these genes. Finally, we acquired a list of microenvironment-related genes that can predict prognosis for ccRCC patients.  相似文献   
37.
Therapeutic angiogenesis for peripheral artery disease (PAD), achieved by gene and cell therapy, has recently raised a great deal of hope for patients who cannot undergo standard revascularizing treatment. Although pre-clinical studies gave very promising data, still clinical trials of gene therapy have not provided satisfactory results. On the other hand, cell therapy approach, despite several limitations, demonstrated more beneficial effects but initial clinical studies must be constantly validated by larger randomized, multi-center, double-blinded, placebo-controlled trials. This review focuses on previous and recent gene and cell therapy studies for limb ischemia, including both experimental and clinical research, and summarizes some important papers published in this field. Moreover, it provides a short comment on combined gene and cell therapy approach on the example of heme oxygenase-1 overexpressing cells with therapeutic properties.  相似文献   
38.
Growth arrest specific 1 (GAS1) is a pleiotropic protein that induces apoptosis and cell arrest in different tumors, but it is also involved in the development of the nervous system and other tissues and organs. This dual ability is likely caused by its capacity to interact both by inhibiting the intracellular signaling cascade induced by glial cell-line derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. The presence of GAS1 mRNA has been described in adult mouse brain, and here we corroborated this observation. We then proceeded to determine the distribution of the protein in the adult central nervous system (CNS). We detected, by western blot analysis, expression of GAS1 in olfactory bulb, caudate-putamen, cerebral cortex, hippocampus, mesencephalon, medulla oblongata, cerebellum, and cervical spinal cord. To more carefully map the expression of GAS1, we performed double-label immunohistochemistry and noticed expression of GAS1 in neurons in all brain areas examined. We also observed expression of GAS1 in astroglial cells, albeit the pattern of expression was more restricted than that seen in neurons. Briefly, in the present article, we report the widespread distribution and cellular localization of the GAS1 native protein in adult mammalian CNS.  相似文献   
39.
Mucor rouxianus produced two forms (isoenzymes) of glucoamylase which could be separated from each other by polyacrylamide gel electrophoresis or by chromatography on SP-Sephadex C-50, and they were designated glucoamylase I and glucoamylase II. Glucoamylases I and II were isolated in crystalline form, and were homogeneous in poly acrylamide gel electrophoresis and in ultracentrifugation, respectively. The sedimentation coefficient () molecular weight of glucoamylase I were 4.39 S and 59,000, and those of glucoamylase II were 4.29 S and 49,000, respectively.  相似文献   
40.
Low extracellular pH promotes in melanoma cells a malignant phenotype characterized by an epithelial-to-mesenchymal transition (EMT) program, endowed with mesenchymal markers, high invasiveness and pro-metastatic property. Here, we demonstrate that melanoma cells exposed to an acidic extracellular microenvironment, 6.7±0.1, shift to an oxidative phosphorylation (Oxphos) metabolism. Metformin, a biguanide commonly used for type 2 diabetes, inhibited the most relevant features of acid-induced phenotype, including EMT and Oxphos. When we tested effects of lactic acidosis, to verify whether sodium lactate might have additional effects on acidic melanoma cells, we found that EMT and Oxphos also characterized lactic acid-treated cells. An increased level of motility was the only gained property of lactic acidic-exposed melanoma cells. Metformin treatment inhibited both EMT markers and Oxphos and, when its concentration raised to 10 mM, it induced a striking inhibition of proliferation and colony formation of acidic melanoma cells, both grown in protons enriched medium or lactic acidosis. Thus, our study provides the first evidence that metformin may target either proton or lactic acidosis-exposed melanoma cells inhibiting EMT and Oxphox metabolism. These findings disclose a new potential rationale of metformin addition to advanced melanoma therapy, e.g. targeting acidic cell subpopulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号