首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   11篇
  国内免费   7篇
  198篇
  2023年   4篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   3篇
  2017年   6篇
  2016年   1篇
  2015年   5篇
  2014年   5篇
  2013年   15篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   16篇
  2006年   9篇
  2005年   4篇
  2004年   8篇
  2003年   9篇
  2002年   5篇
  2001年   9篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有198条查询结果,搜索用时 8 毫秒
81.
Microbial methanogenesis in subseafloor sediments is a key process in the carbon cycle on the Earth. However, the cultivation-dependent evidences have been poorly demonstrated. Here we report the cultivation of a methanogenic microbial consortium from subseafloor sediments using a continuous-flow-type bioreactor with polyurethane sponges as microbial habitats, called down-flow hanging sponge (DHS) reactor. We anaerobically incubated methane-rich core sediments collected from off Shimokita Peninsula, Japan, for 826 days in the reactor at 10 °C. Synthetic seawater supplemented with glucose, yeast extract, acetate and propionate as potential energy sources was provided into the reactor. After 289 days of operation, microbiological methane production became evident. Fluorescence in situ hybridization analysis revealed the presence of metabolically active microbial cells with various morphologies in the reactor. DNA- and RNA-based phylogenetic analyses targeting 16S rRNA indicated the successful growth of phylogenetically diverse microbial components during cultivation in the reactor. Most of the phylotypes in the reactor, once it made methane, were more closely related to culture sequences than to the subsurface environmental sequence. Potentially methanogenic phylotypes related to the genera Methanobacterium, Methanococcoides and Methanosarcina were predominantly detected concomitantly with methane production, while uncultured archaeal phylotypes were also detected. Using the methanogenic community enrichment as subsequent inocula, traditional batch-type cultivations led to the successful isolation of several anaerobic microbes including those methanogens. Our results substantiate that the DHS bioreactor is a useful system for the enrichment of numerous fastidious microbes from subseafloor sediments and will enable the physiological and ecological characterization of pure cultures of previously uncultivated subseafloor microbial life.  相似文献   
82.
The importance of crustal fluid chemical composition in driving the marine deep subseafloor biosphere was examined in northeast Pacific ridge-flank sediments. At IODP Site U1301, sulfate from crustal fluids diffuses into overlying sediments, forming a transition zone where sulfate meets in situ-produced methane. Enhanced cell counts and metabolic activity suggest that sulfate stimulates microbial respiration, specifically anaerobic methane oxidation coupled to sulfate reduction. Cell counts and activity are also elevated in basement-near layers. Owing to the worldwide expansion of the crustal aquifer, we postulate that crustal fluids may fuel the marine deep subseafloor biosphere on a global scale.  相似文献   
83.
Acidophilic degradation of methanol by a methanogenic enrichment culture   总被引:1,自引:0,他引:1  
Abstract An acidophilic methanogenic enrichment culture was obtained in a continuous up-flow anaerobic sludge blanket reactor operated at pH 4.2 with methanol as the sole carbon source. The specific methylotrophic methanogenic activity of the enriched reactor sludge at pH 5 was 3.57 g COD g−1 volatile suspended solids day−1 and the apparent doubling time of the biomass was 15.8 h. Acidic conditions were obligatory, since the enrichment culture was not able to produce methane or to grow at pH 7. Based on morphological characteristics, the dominant methanogenic species in the enrichment culture was a Methanosarcina .  相似文献   
84.
Propionate is an important intermediate in the anaerobic degradation of complex organic matter to methane and carbon dioxide. The metabolism of propionate-forming and propionate-degrading bacteria is reviewed here. Propionate is formed during fermentation of polysaccharides, proteins and fats. The study of the fate of 13C-labelled compounds by nuclear magnetic resonance (NMR) spectroscopy has contributed together with other techniques to the present knowledge of the metabolic routes which lead to propionate formation from these substrates. Since propionate oxidation under methanogenic conditions is thermodynamically difficult, propionate often accumulates when the rates of its formation and degradation are unbalanced. Bacteria which are able to degrade propionate to the methanogenic substrates acetate and hydrogen can only perform this reaction when the methanogens consume acetate and hydrogen efficiently. As a consequence, propionate can only be degraded by obligatory syntrophic consortia of microorganisms. NMR techniques were used to study the degradation of propionate by defined and less defined cultures of these syntrophic consortia. Different types of side-reactions were reported, like the reductive carboxylation to butyrate and the reductive acetylation to higher fatty acids.  相似文献   
85.
Cell suspensions of Methanosarcina barkeri (strain Fusaro) grown on acetate were found to catalyze the formation of methane and CO2 from acetate (30–40 nmol/min·mg protein) and an isotopic exchange between the carboxyl group of acetate and 14CO2 (30–40 nmol/min·mg protein). An isotopic exchange between [14C]-formate and acetate was not observed. Cells grown on methanol mediated neither methane formation from acetate nor the exchange reactions. The data indicate that the isotopic exchange between CO2 and the carboxyl group of acetate is a partial reaction of methanogenesis from acetate. Both reactions were completely inhibited by low concentrations of cyanide (20 M) or of hydrogen (0.5% in the gas phase). Methane formation from acetate was also completely inhibited by low concentrations of carbon monoxide (0.2% in the gas phase) whereas only significantly higher concentrations of CO had an effect on the exchange reaction. In the concentration range tested KCN, H2 and CO had no effect on methane formation from methanol or from H2 and CO2; however, cyanide (20 M) also affected methane formation from CO. The results are discussed with respect to proposed mechanisms of methane and CO2 formation from acetate.  相似文献   
86.
87.
The roles of plant transport and CH4 production in controlling CH4 flux from wet meadow tundra communities were investigated. Plant transport was the dominant pathway of CH4 flux from this ecosystem. Most CH4 production (measured within situ anaerobic incubations) occurred well below the water table, and C supply (estimated by anaerobic CO2 production) was the best single predictor of CH4 production rates. Plant transport of CH4 was controlled both by CH4 supply and the plant species.Eriophorum angustifolium transported substantially more CH4 than didCarex aquatilis, due to differences in size and structure of the two species. The composition of the plant community was a greater control on CH4 flux from the site than either water table height (which varied only slightly) or CH4 production rates, indicating the importance of species-specific plant dynamics in controlling CH4 flux from arctic wetlands.  相似文献   
88.
The numbers of microorganisms belonging to ecologically significant groups and the rates of terminal microbial processes of sulfate reduction and methanogenesis were determined in the liquid phase of an underground gas storage (UGS) in the period of gas extraction. The total number of microorganisms in water samples from the operation and injection wells reached 2.1 × 106 cells/ml. Aerobic organotrophs (including hydrocarbon-and oil-oxidizing ones) and various anaerobic microorganisms (fermenting bacteria, methanogens, acetogens, sulfate-, nitrate-, and iron-reducing bacteria) were constituent parts of the community. The radioisotopic method showed that, in all the UGS units, the terminal stages of organic matter decomposition included sulfate reduction and methanogenesis, with the maximal rate of these processes recorded in the aqueous phase of above-ground technological equipment which the gas enters from the operation wells. A comparative analysis by these parameters of different anaerobic ecotopes, including natural hydrocarbon fields, allows us to assess the rate of these processes in the UGS as high throughout the annual cycle of its operation. The data obtained indicate the existence in the UGS of a bacterial community that is unique in its diversity and metabolic capacities and able to make a certain contribution to the geochemistry of organic and inorganic compounds in the natural and technogenic ecosystem of the UGS and thus influence the industrial gas composition.  相似文献   
89.
Methanogenic archaea conserve energy for growth by reducing some one- and two-carbon compounds to methane and concomitantly generating an ion motive force. Growth of Methanosarcina acetivorans on carbon monoxide (CO) is peculiar as it involves formation of, besides methane, formate, acetate and methylated thiols. It has been argued that methane formation is partially inhibited under carboxidotrophic conditions and that the other products result from either detoxification of CO or from bypassing methanogenesis with other pathways for energy conservation. To gain a deeper understanding of the CO-dependent physiology of M. acetivorans we analyzed metabolite formation in resting cells. The initial rates of methane, acetate, formate, and dimethylsulfide formation increased differentially with increasing CO concentrations but were maximal already at the same moderate CO partial pressure. Strikingly, further increase of the amount of CO was not inhibitory. The maximal rate of methane formation from CO was approximately fivefold lower than that from methanol, consistent with the previously observed significant downregulation of the energy converting sodium-dependent methyltransferase. The rate of dimethylsulfide formation from CO was only 1–2% of that of methane formation under any conditions tested. Implications of the data presented for previously proposed pathways of CO utilization are discussed.  相似文献   
90.
Microbial communities in decommissioned coal mines have the potential to promote methane generation. Here, two 1 m x 10 cm diameter column bioreactors designed to mimic an abandoned coal mine were monitored for a year, with zones of methanogenesis in the bottom, saturated waters and aerobic coal degradation and methane oxidation at the top. The resilience of aerobic methanotrophs to survive periods with low methane and oxygen conditions suggests methanotrophs may be useful in decreasing atmospheric methane fugitive emissions from decommissioned mines. When biogenic methane production from coal did occur, the rate was slow, ≤ 0.073 nmol CH4/g coal/day.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号