首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6091篇
  免费   684篇
  国内免费   249篇
  2023年   98篇
  2022年   80篇
  2021年   129篇
  2020年   190篇
  2019年   228篇
  2018年   225篇
  2017年   223篇
  2016年   241篇
  2015年   261篇
  2014年   273篇
  2013年   391篇
  2012年   262篇
  2011年   266篇
  2010年   260篇
  2009年   334篇
  2008年   320篇
  2007年   307篇
  2006年   290篇
  2005年   248篇
  2004年   245篇
  2003年   214篇
  2002年   219篇
  2001年   165篇
  2000年   132篇
  1999年   155篇
  1998年   130篇
  1997年   115篇
  1996年   109篇
  1995年   84篇
  1994年   84篇
  1993年   79篇
  1992年   52篇
  1991年   59篇
  1990年   59篇
  1989年   56篇
  1988年   52篇
  1987年   43篇
  1986年   30篇
  1985年   32篇
  1984年   50篇
  1983年   30篇
  1982年   37篇
  1981年   29篇
  1980年   22篇
  1979年   11篇
  1978年   20篇
  1977年   12篇
  1976年   16篇
  1973年   9篇
  1972年   17篇
排序方式: 共有7024条查询结果,搜索用时 78 毫秒
921.
The reproductive behavior of two wrasses,Pseudolabrus eoethinus (Richardson, 1846) andP. sieboldi Mabuchi & Nakabo, 1997, was studied on a rocky coast in Shikoku, Japan, where the two species occur sympatrically. In the study area, individual males of each species established mating territories within which pair spawnings occurred. Pair spawnings were observed only between conspecifics, indicating that the two coexisting species were reproductively isolated. Both species usually spawned during the afternoon in early winter and had similar reproductive behavior. Although habitat, temporal and behavioral isolation mechanisms were not apparent, reproductive isolation seemed to occur via premating isolation through visual recognition of conspecific mates because the two species differed in body size and coloration. On one occasion a maleP. sieboldi was observed to perform streaking behavior to join a spawning pair ofP. eoethinus. Thus, postmating isolation between the two species is also discussed.  相似文献   
922.
The seasonal dynamics of a dioecious population of Batrachospermum delicatulum (Skuja) Necchi and Entwisle was evaluated biweekly during the growth period of the macroscopic gametophyte, from late autumn (May) to early spring (October) in a third-order stream from the northeast region of Sao Paulo State, southeastern Brazil (20?43'S, 49?13'W). The population fluctuated throughout the study period in terms of percentage cover, frequency and chlorophyll content. Percent cover and frequency showed a clear pattern with the lowest values at the initial and final stages of the growth period and the highest in July-August (winter). Gametophyte growth was associated with high illumination and low temperature, which agrees with most observations on Batrachospermales in stream environments. Relatively wide variations in reproductive characteristics were observed during the growth period, which were not correlated with percentage cover, frequency and chlorophyll content. The phenologic pattern observed in this population was characterized by a synchronic development of female/male plant ratio with the number of spermatangia per plant resulting in: (i) a higher proportion of fertilized (carpo-sporophytic) plants associated with more male plants; (ii) higher fertilization rates during the periods with higher production of spermatangia per plant; and (iii) higher production of spermatangia per plant when the population had more male plants. These characteristics were largely associated with water temperature and ion content. In terms of reproductive success, the population studied can be regarded as highly efficient, considering the relatively low proportion of male to female plants and high fertilization rates. These data are consistent with a hypothesis to explain high fertilization rates in dioecious species in lotic habitats consisting of outcrossing among adjacent plants with intermingled male and female branches within an algal cluster. Efficient reproductive strategies have been reported in dioecious, monoecious and even mixed populations of B. delicatulum and can be interpreted as adaptations to successfully colonize streams with different characteristics.  相似文献   
923.
This paper considers the extent to which differences in pollen tube growth rates can provide prezygotic reproductive isolation between Mimulus nasutus and its presumed progenitor, Mimulus guttatus . Mimulus nasutus is partially cleistogamous, but its larger chasmogamous flowers offer appreciable opportunity for outcrossing. Mimulus nasutus was found to have smaller pollen grains and shorter styles than M. guttatus . No differences were observed in pollen grain germination on conspecific and heterospecific stigmas. However, pollen tube growth rates of M. nasutus were found to be much slower than those of M. guttatus in the styles of that species. Consequently, any M. nasutus pollen transferred to an M. guttatus stigma was found to be competitively disadvantaged in an M. gutattus style. By contrast, no difference in pollen tube growth rate was detected between the species when growing in M. nasutus styles, possibly because M. nasutus styles are unable to support fast pollen tube growth. We tested the prediction from the pollen tube studies that a 50:50 mix of M. guttatus and M. nasutus pollen would produce 50% hybrid seeds when M. nasutus was the maternal parent, and near to 0% hybrid seed when M. guttatus was the maternal parent. The results were found to support this prediction. We conclude that pollen–pistil interactions can effect strong reproductive isolation between these species, as M. guttatus pollen tubes have a competitive advantage over those of M. nasutus in an M. guttatus style, but not in an M. nasutus style.  相似文献   
924.
The evolution of gamete incompatibility between free-spawning marine invertebrate species has been explained by three hypotheses: (1) independent divergence at gamete recognition loci; (2) selection against hybrids; and (3) a process of sexual selection involving polymorphic gamete recognition loci (Metz and Palumbi 1996). The first two hypotheses predict that gamete incompatibility appears only after gene flow has been halted for other reasons and the third that gamete incompatibility appears simultanously with blocks to gene flow. Here I show that gametes of three sympatric polychaetes in the genus Arctonoe are compatible in all crosses, over a broad range of gamete concentrations and contact times. Although at least some hybrid crosses produce fertile adults, allozyme and mitochondrial DNA sequence data indicate that the three species do not regularly exchange genes. These data are consistent with predictions of the first two hypotheses for the evolution of gamete incompatibility, but allow rejection of the third hypothesis. Gametes of the three species are compatible despite estimated divergence times of 1–3 M.Y.B.P.; in several other marine invertebrates, divergence times of the same magnitude are associated with asymmetric or complete gamete incompatibility. It appears likely that segregation of symbiotic adults on their respective host species restricts mating opportunities, and thus gene flow, among Arctonoe species.  相似文献   
925.
The amount of effort organisms should put into reproducing at any given time has been a matter of debate for many years. Early models suggested a simple rule of thumb: iteroparity should be favored when juvenile survival is relatively variable and semelparity when adult survival is relatively variable. When more mathematically complex models were developed, these simple conclusions were found to be special cases. Variability can select toward iteroparity or semelparity depending on a number of factors irrespective of relative adult/juvenile survival (e.g, the density-independent models of Orzack and Tuljapurkar). Using new techniques, we estimate the ESS reproductive effort for stage-structured models in density-dependent and stochastic conditions. We find that variability causes significant changes in reproductive effort, these changes are often small (± 10% of determinstic ESS effort, but up to 50% change in some instances), and the amount that effort increases or decreases depends on many factors (e.g., the deterministic population dynamics, the vital rates affected by density, the amount of variation, the correlations between the vital rates, the distribution from which the variation is drawn, and the deterministic ESS effort). In a variable environment, semelparity is the ESS in only 3.5% of cases; iteroparity is the rule.  相似文献   
926.
927.
One of the most intriguing and complex characteristics of reproductive phenology in tropical forests is high diversity within and among forests. To understand such diversity, Newstrom et al. provided a systematic framework for the classification of tropical flowering phenology. They adopted frequency and regularity as criteria with priority, and classified plants in La Selva, Costa Rica, where most plants reproduced more than once a year irregularly. Many other studies have demonstrated annual cycles corresponding to rainfall patterns at the community level in Neotropical forests, including La Selva. On the other hand, supraannual flowering synchronized among various plant species, called general flowering, is known from aseasonal lowland dipterocarp forests in Southeast Asia. Within both forests, a wide spectrum of flowering patterns is found. This range of patterns suggests the great potential of tropical phenological studies to explore the selective pressures on phenology. Various abiotic and biotic factors can be selective agents. The shared pollinators hypothesis suggests that plant species sharing pollinators segregate flowering temporarily to minimize interspecific overlap in flowering times and thus minimize ineffective pollination or competition for pollinators, indicating strong phylogenetic constraints in timing and variation of flowering. Comparison of phenology within and among forests may help our understanding of phenological diversity. Attempts are now being made to develop a common language to communicate concepts and render interpretations of data more compatible among investigators and to create a network to promote comparative studies. Received: September 8, 2000 / Accepted: January 30, 2001  相似文献   
928.
Two new polyploid species of Senecio have originated in the British Isles in recent times following hybridization between native S. vulgaris (2 n  = 40) and introduced S. squalidus (2 n  = 20). One of these is the allohexaploid S. cambrensis (2 n  = 60), the other is the recombinant tetraploid S. eboracensis (2 n  = 40). We review what is known about when and how each species originated, and their reproductive isolation from parents due to high selfing rates. We also review evidence that suggests S. cambrensis may have undergone rapid genome evolution since its origin, and comment on the risks of extinction to each species due to chance factors operating during the early establishment phase. The discovery of both species soon after their origin provides an unparalleled opportunity to examine two different but related forms of speciation following hybridization between the same parent species. Further detailed study of the ecology and genomics of S. cambrensis and S. eboracensis will help improve our understanding of the process of polyploid speciation in plants.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 467–474.  相似文献   
929.
Saiphos equalis , a semi-fossorial scincid lizard from south-eastern Australia, is one of only three reptile species world-wide that are known to display geographic variation in reproductive mode. Uniquely, Saiphos equalis includes populations with three reproductive modes: oviparous with long (15-day) incubation periods; oviparous with short (5-day) incubation periods; and viviparous (0-day incubation periods). No Saiphos populations show 'normal' scincid oviparity (> 30-day incubation period). We used mitochondrial nucleotide sequences ( ND2 and cytochrome b ) to reconstruct relationships among populations from throughout the species' distribution in New South Wales, Australia. Under the phylogenetic species concept, phylogenetic analyses are consistent with the oviparous and viviparous populations of S. equalis being conspecific. Phylogenetic analyses suggest that the long incubation period oviparous lineage is the sister group to all other populations; and that the viviparous populations belong to a cluster of weakly supported clades basal to the short-incubation-period oviparous clade. These clades correspond to variation in reproductive mode and geographic location.  相似文献   
930.
Abstract Both chromosomal rearrangements and negative interactions among loci (Dobzhansky‐Muller incompatibilities) have been advanced as the genetic mechanism underlying the sterility of interspecific hybrids. These alternatives invoke very different evolutionary histories during speciation and also predict different patterns of sterility in artificial hybrids. Chromosomal rearrangements require drift, inbreeding, or other special conditions for initial fixation and, because heterozygosity per se generates any problems with gamete formation, F1 hybrids will be most infertile. In contrast, Dobzhansky‐Muller incompatibilities may arise as byproducts of adaptive evolution and often affect the segregating F2 generation most severely. To distinguish the effects of these two mechanisms early in divergence, we investigated the quantitative genetics of hybrid sterility in a line cross between two members of the Mimulus guttatus species complex (M. guttatus and M. nasutus). Hybrids showed partial male and female sterility, and the patterns of infertility were not consistent with the action of chromosomal rearrangements alone. F2 and F1 hybrids exhibited equal decreases in pollen viability (> 40%) relative to the highly fertile parental lines. A large excess of completely pollen‐sterile F2 genotypes also pointed to the segregation of Dobzhansky‐Muller incompatibility factors affecting male fertility. Female fertility showed a pattern similarly consistent with epistatic interactions: F2 hybrids produced far fewer seeds per flower than F1 hybrids (88.0 ± 2.8 vs. 162.9 ± 8.5 SE, respectively) and either parental line, and many F2 genotypes were completely female sterile. Dobzhansky‐Muller interactions also resulted in the breakdown of several nonreproductive characters and appear to contribute to correlations between male and female fertility in the F2 generation. These results parallel and contrast with the genetics of postzygotic isolation in model animal systems and are a first step toward understanding the process of speciation in this well‐studied group of flowering plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号