首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   821篇
  免费   92篇
  国内免费   27篇
  2023年   7篇
  2022年   8篇
  2021年   7篇
  2020年   17篇
  2019年   20篇
  2018年   36篇
  2017年   29篇
  2016年   17篇
  2015年   12篇
  2014年   62篇
  2013年   48篇
  2012年   28篇
  2011年   35篇
  2010年   29篇
  2009年   41篇
  2008年   40篇
  2007年   43篇
  2006年   37篇
  2005年   39篇
  2004年   27篇
  2003年   31篇
  2002年   25篇
  2001年   17篇
  2000年   15篇
  1999年   17篇
  1998年   16篇
  1997年   10篇
  1996年   10篇
  1995年   8篇
  1994年   8篇
  1993年   14篇
  1992年   8篇
  1991年   15篇
  1990年   10篇
  1989年   8篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   9篇
  1984年   12篇
  1983年   24篇
  1982年   19篇
  1981年   20篇
  1980年   12篇
  1979年   9篇
  1978年   4篇
  1977年   5篇
  1976年   7篇
  1975年   3篇
  1974年   4篇
排序方式: 共有940条查询结果,搜索用时 31 毫秒
41.
蛋白酪氨酸磷酸酶PRL-3是近年发现的蛋白酪氨酸磷酸酶家族成员,能促进肿瘤细胞的侵袭、转移及上皮细胞间质转型,提示PRL-3可能在肿瘤发生发展及诱导肿瘤干细胞生成中发挥重要作用.由于侧群(SP)细胞具有许多干细胞的性质,SP细胞分选是目前筛选和分离获得干细胞或前体细胞常用的有效方法.为探讨PRL-3在诱导干细胞生成中的潜在作用,本文在建立过表达PRL-3的人胃癌细胞BGC823的基础上,通过SP分选和CCK-8的方法分析PRL-3对BGC823细胞中SP细胞的比例以及对化疗药物耐受性的影响.结果提示,高表达PRL-3提高BGC823中SP细胞的比例(2.5% vs 9.4%),同时增加BGC823对化疗药物紫杉醇和顺铂的耐受性(相对于对照细胞,其耐药指数分别为1.75和1.29).由于SP细胞的产生和细胞耐药性的提高与ABC家族基因表达水平上调密切相关,通过定量 RT-PCR和Western印迹检测发现,PRL-3能上调ABCB1和ABCG2的表达.上述研究结果表明,PRL-3有可能通过上调ABCB1和ABCG2的表达,增加胃癌细胞BGC823的SP细胞比例并增加其对化疗药物的耐受性.  相似文献   
42.
Side effect similarities of drugs have recently been employed to predict new drug targets, and networks of side effects and targets have been used to better understand the mechanism of action of drugs. Here, we report a large‐scale analysis to systematically predict and characterize proteins that cause drug side effects. We integrated phenotypic data obtained during clinical trials with known drug–target relations to identify overrepresented protein–side effect combinations. Using independent data, we confirm that most of these overrepresentations point to proteins which, when perturbed, cause side effects. Of 1428 side effects studied, 732 were predicted to be predominantly caused by individual proteins, at least 137 of them backed by existing pharmacological or phenotypic data. We prove this concept in vivo by confirming our prediction that activation of the serotonin 7 receptor (HTR7) is responsible for hyperesthesia in mice, which, in turn, can be prevented by a drug that selectively inhibits HTR7. Taken together, we show that a large fraction of complex drug side effects are mediated by individual proteins and create a reference for such relations.  相似文献   
43.
A novel bacterium, strain SZ28, identified as Acinetobacter sp., showed anaerobic denitrification ability using Mn(II) as the electron donor. Nitrate-nitrogen concentration decreased from nearly 16.52–mg L?1 to 4.4–mg L?1, without accumulation of nitrite as an intermediate, with a maximum of 0.063–mg NO3?-N L?1 h?1, reaching a peak of 0.085–mg NO3?-N L?1 h?1 in sodium acetate. The nitrate removal rate reached 0.067–mg NO3?-N L?1 h?1, 0.059–mg NO3?-N L?1 h?1, and 0.078 mg NO3?-N L?1 h?1 using Mn(II), S(II), and Fe(II) as electron donors, respectively. The optimum pH was 6.0, with a removal rate of 0.063–mg NO3?-N L?1 h?1  相似文献   
44.
The prediction of protein side chain conformations from backbone coordinates is an important task in structural biology, with applications in structure prediction and protein design. It is a difficult problem due to its combinatorial nature. We study the performance of an “MMGBSA” energy function, implemented in our protein design program Proteus, which combines molecular mechanics terms, a Generalized Born and Surface Area (GBSA) solvent model, with approximations that make the model pairwise additive. Proteus is not a competitor to specialized side chain prediction programs due to its cost, but it allows protein design applications, where side chain prediction is an important step and MMGBSA an effective energy model. We predict the side chain conformations for 18 proteins. The side chains are first predicted individually, with the rest of the protein in its crystallographic conformation. Next, all side chains are predicted together. The contributions of individual energy terms are evaluated and various parameterizations are compared. We find that the GB and SA terms, with an appropriate choice of the dielectric constant and surface energy coefficients, are beneficial for single side chain predictions. For the prediction of all side chains, however, errors due to the pairwise additive approximation overcome the improvement brought by these terms. We also show the crucial contribution of side chain minimization to alleviate the rigid rotamer approximation. Even without GB and SA terms, we obtain accuracies comparable to SCWRL4, a specialized side chain prediction program. In particular, we obtain a better RMSD than SCWRL4 for core residues (at a higher cost), despite our simpler rotamer library. Proteins 2016; 84:803–819. © 2016 Wiley Periodicals, Inc.  相似文献   
45.
46.
The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV–visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO–LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor–acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor–acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide–protein interaction.  相似文献   
47.
Nonfullerene acceptors (NFAs) dominate organic photovoltaic (OPV) research due to their promising efficiencies and stabilities. However, there is very little investigation into the molecular processes of degradation, which is critical to guiding design of novel NFAs for long‐lived, commercially viable OPVs. Here, the important role of molecular structure and conformation in NFA photostability in air is investigated by comparing structurally similar but conformationally different promising NFAs: planar O‐IDTBR and nonplanar O‐IDFBR. A three‐phase degradation process is identified: i) initial photoinduced conformational change (i.e., torsion about the core–benzothiadiazole dihedral), induced by noncovalent interactions with environmental molecules, ii) followed by photo‐oxidation and fragmentation, leading to chromophore bleaching and degradation product formation, and iii) finally complete chromophore bleaching. Initial conformational change is a critical prerequisite for further degradation, providing fundamental understanding of the relative stability of IDTBR and IDFBR, where the already twisted IDFBR is more prone to degradation. When blended with the donor polymer poly(3‐hexylthiophene), both NFAs exhibit improved photostability while the photostability of the polymer itself is significantly reduced by the more miscible twisted NFA. The findings elucidate the important role of NFA molecular structure in photostability of OPV systems, and provide vital insights into molecular design rules for intrinsically photostable NFAs.  相似文献   
48.
In the subwavelength regime, several nanophotonic configurations have been proposed to overcome the conventional light trapping or light absorption enhancement limit in solar cells also known as the Yablonovitch limit. It has been recently suggested that establishing such limit should rely on computational inverse electromagnetic design instead of the traditional approach combining intuition and a priori known physical effect. In the present work, by applying an inverse full wave vector electromagnetic computational approach, a 1D nanostructured optical cavity with a new resonance configuration is designed that provides an ultrabroadband (≈450 nm) light absorption enhancement when applied to a 107 nm thick active layer organic solar cell based on a low‐bandgap (1.32 eV) nonfullerene acceptor. It is demonstrated computationally and experimentally that the absorption enhancement provided by such a cavity surpasses the conventional limit resulting from an ergodic optical geometry by a 7% average over a 450 nm band and by more than 20% in the NIR. In such a cavity configuration the solar cells exhibit a maximum power conversion efficiency above 14%, corresponding to the highest ever measured for devices based on the specific nonfullerene acceptor used.  相似文献   
49.
Recent studies demonstrated the importance of the mitochondrial ATP in the regulation of a novel long-chain fatty acid generation/export system in mitochondria of diabetic rat heart. In steroidogenic systems, mitochondrial ATP and intramitochondrial arachidonic acid (AA) generation are important for steroidogenesis. Here, we report that mitochondrial ATP is necessary for the generation and export of AA, steroid production and steroidogenic acute regulatory protein induction supported by cyclic 3'-5'-adenosine monophosphate in steroidogenic cells. These results demonstrate that ATP depletion affects AA export and provide new evidence of the existence of the fatty acid generation and export system involved in mitochondrial cholesterol transport.  相似文献   
50.
The monomeric chlorophyll, ChlD1, which is located between the PD1PD2 chlorophyll pair and the pheophytin, PheoD1, is the longest wavelength chlorophyll in the heart of Photosystem II and is thought to be the primary electron donor. Its central Mg2+ is liganded to a water molecule that is H-bonded to D1/T179. Here, two site-directed mutants, D1/T179H and D1/T179V, were made in the thermophilic cyanobacterium, Thermosynechococcus elongatus, and characterized by a range of biophysical techniques. The Mn4CaO5 cluster in the water-splitting site is fully active in both mutants. Changes in thermoluminescence indicate that i) radiative recombination occurs via the repopulation of *ChlD1 itself; ii) non-radiative charge recombination reactions appeared to be faster in the T179H-PSII; and iii) the properties of PD1PD2 were unaffected by this mutation, and consequently iv) the immediate precursor state of the radiative excited state is the ChlD1+PheoD1? radical pair. Chlorophyll bleaching due to high intensity illumination correlated with the amount of 1O2 generated. Comparison of the bleaching spectra with the electrochromic shifts attributed to ChlD1 upon QA? formation, indicates that in the T179H-PSII and in the WT*3-PSII, the ChlD1 itself is the chlorophyll that is first damaged by 1O2, whereas in the T179V-PSII a more red chlorophyll is damaged, the identity of which is discussed. Thus, ChlD1 appears to be one of the primary damage site in recombination-mediated photoinhibition. Finally, changes in the absorption of ChlD1 very likely contribute to the well-known electrochromic shifts observed at ~430?nm during the S-state cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号