首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27266篇
  免费   2530篇
  国内免费   1958篇
  31754篇
  2024年   132篇
  2023年   648篇
  2022年   760篇
  2021年   1113篇
  2020年   1174篇
  2019年   1378篇
  2018年   1154篇
  2017年   1096篇
  2016年   1131篇
  2015年   1362篇
  2014年   1615篇
  2013年   2416篇
  2012年   1154篇
  2011年   1316篇
  2010年   934篇
  2009年   1482篇
  2008年   1480篇
  2007年   1447篇
  2006年   1297篇
  2005年   1068篇
  2004年   987篇
  2003年   842篇
  2002年   693篇
  2001年   595篇
  2000年   511篇
  1999年   450篇
  1998年   425篇
  1997年   415篇
  1996年   332篇
  1995年   272篇
  1994年   245篇
  1993年   253篇
  1992年   206篇
  1991年   191篇
  1990年   158篇
  1989年   144篇
  1988年   124篇
  1987年   107篇
  1986年   94篇
  1985年   105篇
  1984年   84篇
  1983年   53篇
  1982年   94篇
  1981年   75篇
  1980年   44篇
  1979年   37篇
  1978年   20篇
  1977年   12篇
  1976年   11篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
271.
外源甘露醇可在一定程度上增强鱼腥藻Anabaenasp.7120固氮的抗渗透胁迫能力.厌氧(Ar中)、能量供应受阻(暗处理、添加ATP形成的抑制剂)、合成固氮酶蛋白所需物质供应不足(单加N2不加CO2)以及分子氧下,甘露醇的有益作用减小或消失,反之(正常光照、通气环境、提高CO2浓度,同时供应H2和O2或CO2和N2)则这一作用增大。渗透胁迫下,外源蔗糖对甘露醇支持蓝藻固氮的作用不明显。  相似文献   
272.
The effects of ionizing radiation, used in post-harvest treatment of fruit and vegetables. were investigated on cultured apple cells ( Pyrus malus L. cv. Royal Red) on a short-term period. Irradiation (2 kGy) induced an increase of passive ion effluxes from cells and a decrease of cell capacity to regulate external pH. These alterations are likely due to effects on plasma membrane structure and function and were further investigated by studying the effects of irradiation on plasma membrane H+-ATPase activity. Plasma membrane-enriched vesicles were prepared and the H+-ATPase activity was characterized. Irradiation of the vesicles induced a dose dependent inhibition of H+-ATPase activity. The loss of enzyme activity was immediate, even at low doses (0.5 kGy), and was not reversed by the addition of 2m M dithiothreitol. This inhibition may be the result of an irreversible oxidation of enzyme sulfhydryl moieties and/or the result of changes induced within the lipid bilayer affecting the membrane-enzyme interactions. Further analysis of the H+-ATPase activity was carried out on vesicles obtained from irradiated cells confirming the previous results. In vivo recovery of activity was not observed within 5 h following the treatment, thus explaining the decrease of cell capacity to regulate external pH.
This rapid irreversible inhibition of the plasma membrane H+-ATPase must be considered as one of the most important primary biochemical events occurring in irradiated plant material.  相似文献   
273.
We have investigated the role of stress-activated signaling pathways and the small heat shock protein, Hsp27, in protecting PC12 cells from heat shock and nerve growth factor (NGF) withdrawal-induced apoptosis. PC12 cells and a stable cell line overexpressing Hsp27 (HSPC cells) were subjected to heat shock. This resulted in the rapid activation of Akt followed by p38 mitogen-activated protein kinase (MAPK) signaling, with phosphorylation and intracellular translocation of Hsp27 also detectable. Hsp27 was found to form an immunoprecipitable complex with Akt and p38 MAPK in both non-stimulated and heat shocked cells, although after heat shock there was a gradual dissociation of Akt and p38 from the Hsp27. Cells were differentiated with NGF and then subjected to NGF withdrawal, a treatment which results in substantial cell death over 24-72 h. Hsp27 was shown to be protective against this treatment, since HSPC cells which overexpress Hsp27 showed significantly less cell death than the parental PC12 cells. In addition, we observed that phosphorylation of Akt was maintained in HSPC cells subjected to heat shock and NGF withdrawal compared with the parental cells. Taken together, our results suggest that Hsp27 may protect Akt from dephosphorylation and may also act in stabilizing Akt.  相似文献   
274.
盐胁迫下植物细胞离子稳态重建机制   总被引:18,自引:6,他引:18  
土壤盐渍化是困扰世界粮食产量的一大难题。在盐胁迫环境中,植物获得耐盐能力的一个重要策略是建立新的离子稳态(ionic homeostasis)。盐胁迫下植物细胞离子稳态依赖于膜转运蛋白(泵、载体和离子通道)。利用蛋白质的生化功能分析和突变体功能互补等方法,目前已克隆和鉴定了许多参与离子稳态重建的膜转运蛋白。综述了盐胁迫下植物细胞离子稳态重建的最新研究进展。  相似文献   
275.
The decrease in catalase activity and its relationship to change in salicylic acid content were investigated in rice, wheat, and cucumber seedlings exposed to oxidative stresses. A decrease in chlorophyll fluorescence (F/Fm), measured as an indicator of the oxidative stress, and a drop in catalase activity were observed following treatment with NaCl in all plant seedlings tested . Furthermore, such decreases in F/Fm and catalase activity were also observed under low temperature conditions in both rice cultivars, whereas the degrees of decrease were dependent on their low temperature tolerance . Although the content of salicylic acid increased in rice seedlings stressed by NaCl treatment, it was inversely correlated with the decrease in the catalase activity . Such a relationship between the decrease in catalase activity and increase in salicylic acid content was confirmed with paraquat treatment of the rice seedlings . These results suggested that the fall in catalase activity is a phenomenon occurring in many plant species under oxidative stress and is related to the accumulation of salicylic acid in oxidatively-stressed plants.  相似文献   
276.
AIMS: The aim was to develop reliable and economical protocols for the production of fully deuteriated biomolecules by bacteria. This required the preparation of deuterium-tolerant bacterial strains and an understanding of the physiological mechanisms of acquisition of deuterium tolerance. METHODS AND RESULTS: We report here improved methods for the cultivation of Escherichia coli on fully deuteriated minimal medium. A multi-stage adaptation protocol was developed; this included repeated plating and selection of colonies and resulted in highly deuterium-tolerant cell cultures. Three E. coli strains, JM109, MRE600 and MRE600Rif, were adapted to growth on deuteriated succinate medium. This is the first report of JM109 being adapted to deuteriated minimal media. The adapted strains showed good, consistent growth rates and were capable of being transformed with plasmids. Expression of heterologous proteins in these strains was reliable and yields were consistently high (100-200 mg l-1). We also show that all E. coli cells are inherently capable of growth on deuteriated media. CONCLUSIONS: We have developed a new adaptation protocol that resulted in three highly deuterium-tolerant E. coli strains. Deuterium-adapted cultures produced good yields of a deuteriated recombinant protein. We suggest that E. coli cells are inherently capable of growth on deuteriated media, but that non-specific mutations enhance deuterium tolerance. Thus plating and selection of colonies leads to highly deuterium-tolerant strains. SIGNIFICANCE AND IMPACT OF STUDY: An understanding of the mechanism of adaptation of E. coli to growth on deuteriated media allows strategies for the development of disabled deuterium-tolerant strains suitable for high-level production of deuteriated recombinant proteins and other biomolecules. This is of particular importance for nuclear magnetic resonance and neutron scattering studies of biomolecules.  相似文献   
277.
Abstract. Kosteletzkya virginica (L.) Presl., a dicot halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m 3 NaCl, and the effects of external salinity on root growth, ion and water levels, and lipid content were examined in successive harvests. Root growth paralleled shoot growth trends, with some enhancement observed at 85 mol m 3 NaCl and a reduction noted at the higher salinities. Root Na+ content increased with increasing external NaCl, but remained constant with time for each treatment. K+ content, although lower in salt-grown plants after 14 d salinization, subsequently increased to levels comparable to unsalinized plants. A strong K+ affinity was reflected in the increased K+/Na+ selectivity of salt-grown plants and by their low Na+/K+ ratios. Cl levels rose in salinized plants and values were double or more those for Na+, indicating the possibility of a sodium-excluding mechanism in roots. Root phospholipids and sterols, principal membrane constituents, were maintained or elevated and the free sterol/phospholipids ratio increased in salinized K. virginica plants, suggesting retention of overall membrane structure and decreased permeability. This response, considered in light of root calcium maintenance and high potassium levels, suggests that salinity-induced changes in membrane lipid composition may be important in preventing K+ leakage from cells.  相似文献   
278.
We urgently need to predict species responses to climate change to minimize future biodiversity loss and ensure we do not waste limited resources on ineffective conservation strategies. Currently, most predictions of species responses to climate change ignore the potential for evolution. However, evolution can alter species ecological responses, and different aspects of evolution and ecology can interact to produce complex eco‐evolutionary dynamics under climate change. Here we review how evolution could alter ecological responses to climate change on species warm and cool range margins, where evolution could be especially important. We discuss different aspects of evolution in isolation, and then synthesize results to consider how multiple evolutionary processes might interact and affect conservation strategies. On species cool range margins, the evolution of dispersal could increase range expansion rates and allow species to adapt to novel conditions in their new range. However, low genetic variation and genetic drift in small range‐front populations could also slow or halt range expansions. Together, these eco‐evolutionary effects could cause a three‐step, stop‐and‐go expansion pattern for many species. On warm range margins, isolation among populations could maintain high genetic variation that facilitates evolution to novel climates and allows species to persist longer than expected without evolution. This ‘evolutionary extinction debt’ could then prevent other species from shifting their ranges. However, as climate change increases isolation among populations, increasing dispersal mortality could select for decreased dispersal and cause rapid range contractions. Some of these eco‐evolutionary dynamics could explain why many species are not responding to climate change as predicted. We conclude by suggesting that resurveying historical studies that measured trait frequencies, the strength of selection, or heritabilities could be an efficient way to increase our eco‐evolutionary knowledge in climate change biology.  相似文献   
279.
High temperature (HT) is becoming an increasingly serious factor in limiting crop production with global climate change. During hot seasons, owing to prevailing HT, cultivated tomatoes are prone to exhibiting stigma exsertion, which hampers pollination and causes fruit set failure. However, the underlying regulatory mechanisms of the HT‐induced stigma exsertion remain largely unknown. Here, we demonstrate that stigma exsertion induced by HT in cultivated tomato is caused by more seriously shortened stamens than pistils, which is different from the stigma exsertion observed in wild tomato species. Under the HT condition, the different responses of pectin, sugar, expansin, and cyclin cause cell wall remodelling and differentially localized cell division and selective cell enlargement, which further determine the lengths of stamens and pistils. In addition, auxin and jasmonate (JA) are implicated in regulating cell division and cell expansion in stamens and pistils, and exogenous JA instead of auxin treatment can effectively rescue tomato stigma exsertion through regulating the JA/COI1 signalling pathway. Our findings provide a better understanding of stigma exsertions under the HT condition in tomato and uncover a new function of JA in improving plant abiotic stress tolerance.  相似文献   
280.
番茄复三螺旋基因响应外源激素和非生物胁迫的研究   总被引:1,自引:0,他引:1  
复三螺旋(double trihelix)基因在植物形态建成和植株抗逆性方面发挥关键作用。该研究以番茄自交品种AC++为试验材料,运用生物信息学方法与qRT PCR技术对5个复三螺旋成员(SlGTL1~SlGTL5)在番茄体内不同器官的表达模式、以及基因对激素与非生物胁迫的响应进行表达分析,以探讨番茄复三螺旋基因的功能。结果表明:(1)生物信息学分析显示,番茄中含有5个复三螺旋基因(SlGTL1~SlGTL5);进化树分析表明,番茄复三螺旋基因具有物种特异性。(2)qRT PCR分析显示,番茄SlGTL3基因在根和茎中特异表达,其他4个基因均在果实中较高表达,表明不同番茄复三螺旋基因的表达具有组织特异性。(3)激素诱导表达结果显示,SlGTL1只响应ABA(1种)激素,而SlGTL5基因可响应4种激素,且速度较快。(4)非生物胁迫诱导证实,SlGTL3、SlGTL5基因可响应盐胁迫,SlGTL3~SlGTL5基因可响应极端温度,SlGTL3和SlGTL4基因可响应机械损伤;SlGTL1、SlGTL4和SlGTL5可响应脱水胁迫。研究认为,SlGTL3的功能可能与植株形态建成和非生物胁迫有关,其他4个基因的功能可能与果实的发育有关;推测SlGTL1可能与ABA信号途径有关,SlGTL5快速响应多种激素,可能位于信息传递的节点,其功能可能与信号传递有关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号