首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27203篇
  免费   2509篇
  国内免费   1938篇
  2024年   106篇
  2023年   630篇
  2022年   707篇
  2021年   1113篇
  2020年   1170篇
  2019年   1378篇
  2018年   1153篇
  2017年   1094篇
  2016年   1131篇
  2015年   1362篇
  2014年   1615篇
  2013年   2416篇
  2012年   1154篇
  2011年   1316篇
  2010年   934篇
  2009年   1482篇
  2008年   1480篇
  2007年   1447篇
  2006年   1297篇
  2005年   1068篇
  2004年   987篇
  2003年   842篇
  2002年   693篇
  2001年   595篇
  2000年   511篇
  1999年   450篇
  1998年   425篇
  1997年   415篇
  1996年   332篇
  1995年   272篇
  1994年   245篇
  1993年   253篇
  1992年   206篇
  1991年   191篇
  1990年   158篇
  1989年   144篇
  1988年   124篇
  1987年   107篇
  1986年   94篇
  1985年   105篇
  1984年   84篇
  1983年   53篇
  1982年   94篇
  1981年   75篇
  1980年   44篇
  1979年   37篇
  1978年   20篇
  1977年   12篇
  1976年   11篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 834 毫秒
211.
Drought responses of diurnal gas exchange, malic acid accumulation and water status were examined in Delosperma tradescantioides , a succulent that grows in drought-prone microenvironments in summer rainfall and all-year rainfall regions of southern Africa. When well-watered, this species exhibited Crassulacean acid metabolism (CAM)-cycling, but its carbon fixation pattern changed during the development of drought, shifting to either low-level CAM or to CAM-idling. The rate and pattern of this change depended on environmental conditions, duration of water stress and leaf age. At the onset of drought, diurnal malate fluctuation increased, but was strongly depressed (by ca 70%) as drought continued, and when leaf water content and water potential were low (ca 35 and 50% of the initial levels, respectively). When rewatered, rates of growth and photosynthesis, gas exchange and water status recovered fully to pre-stressed values within two days. Whole-shoot carbon uptake rates suggested that leaf growth had continued unabated during a short-term (∼ one week) drought. This emphasises that CAM-idling allows the maintenance of active metabolism with negligible gas exchange when soil water is limiting. It is possible that old or senescent leaves may provide water for the expansion of developing leaves during initial periods of drought. Regardless of the water regime and environmental conditions, leaf nocturnal malate accumulation and water content were positively correlated and increased with leaf age. Thus the gradual loss of water from older mature leaves may induce CAM-idling, which reduces water loss. An important ecological consequence of this combination of CAM modes is the potential to switch rapidly between fast growth via C3 gas exchanges when well-watered to water-conserving CAM-idling during drought.  相似文献   
212.
213.
Enhanced production and accumulation of free and conjugated polyamines as well as increased activities of their biosynthetic enzymes in plants have been associated with heat stress. Perchloric acid-soluble free, as well as conjugated polyamines, and their metabolic enzymes were studied under 45°C heat stress in callus raised from heat-tolerant and -sensitive rice cultivars. The levels of free and conjugated polyamines, as well as arginine decarboxylase (EC 4.1.1.19) and polyamine oxidase (EC 1.4.34) activities were higher in tolerant than in sensitive callus under non-stressed conditions. Heat stress caused greater accumulation of free and conjugated polyamines in callus of the heat-tolerant cultivar N22 than in that of the heat-sensitive cultivar IR8. In particular, the uncommon polyamines norspermidine and norspermine were detected in cv. N22, which increased appreciably during stress, but they were not detected in callus of cv. IR8. Arginine decarboxylase and polyamine oxidase activities increased to a larger extent in N22 than in IR8 callus during stress, activities that were well correlated with the increased levels of common and uncommon polyamines. Increased levels of transglutaminase activity indicated the high titre of conjugated polyamines.  相似文献   
214.
215.
Although considerable effort has been directed at identifying and understanding the function and regulation of stress-induced proteins in herbaceous plants, reports concerning woody plants are limited. Studies with herbaceous crops have revealed similarities in the types of proteins that accumulate in response to a wide array of abiotic stresses and hormonal cues such as the accumulation of abscisic acid. Many of the identified proteins appear to be related to dehydrins (the D-11 subgroup of late-embryogenesis-abundant proteins). The objective of the present study was to determine if seasonal induction of dehydrins is a common feature in woody plants and to see if seasonal patterns existed for other stress-induced proteins. Bark tissues from eight species of woody plants were collected monthly for a period of 1.5 years. The species included: peach (Prunus persica) cv. Loring; apple (Malus domestica) cv. Golden Delicious; thornless blackberry (Rubus sp.) cv. Chester; hybrid poplar (Populus nigra); weeping willow (Salix babylonica); flowering dogwood (Cornus florida); sassafras (Sassafras albidum); and black locust (Robinia pseudo-acacia). Immunoblots of bark proteins were probed with a polyclonal antibody recognizing a conserved region of dehydrin proteins, and monoclonal antibodies directed against members of the HS70 family of heat-shock proteins. Some proteins, immunologically related to dehydrins, appeared to be constitutive; however, distinct seasonal patterns associated with winter acclimation were also observed in all species. The molecular masses of these proteins varied widely, although similarities were observed in related species (willow and poplar). Identification of proteins using the monoclonal antibodies (HSP70, HSC70, BiP) was more definitive because of their inherent specificity, but seasonal patterns were more variable among the eight species examined. This study represents only a precursory examination of several proteins reported to be stress related in herbaceous plants, but the results indicate that these proteins are also common to woody plants and that further research to characterize their regulation and function in relation to stress adaptation and the perennial life cycle of woody plants is warranted.  相似文献   
216.
F. J. Castillo 《Oecologia》1996,107(4):469-477
The antioxidative protection during the C3-CAM shift induced by water stress was investigated in the temperate succulent Sedum album L. The C3-CAM shift was characterized in terms of CO2 exchange, titratable acidity and phosphoenolpyruvate carboxylase activity. Well-watered plants displayed C3-like patterns of gas exchange and exhibited a mild day-night acid fluctuation indicating that those plants were performing CAM-cycling metabolism. Imposed drought highly stimulated CAM cycling, decreasing the net CO2 uptake during the day, eliminating net CO2 efflux at night and stimulating tissue acid fluctuations. As water deficit developed, chlorophyll fluorescence measurements showed a decrease in the Fv/Fm ratio, indicating that photoinhibition could follow after severe drought. Protection might be performed by the increased activity of enzymes involved in the destruction of free radicals and oxidants, but their response depended on the water status of the plant. Ascorbate peroxidase and superoxide dismutase activities increased in plants subjected to mild stress but declined during severe water stress. Catalase activity, however, was quite stable under mild water stress and was clearly inhibited under severe water stress. At this stage, glutathione reductase and monodehydroascorbate reductase seemed to be very important in the protection against oxidants, both increasing considerably their activities under severe water stress. Even if recycling has been shown to alleviate photoinhibition, our results clearly demonstrate that antioxidative enzymes play an important role in the protection of plants from oxidants during the C3-CAM shift induced by water stress.  相似文献   
217.
Carbon disulfide (CS2) and carbonyl sulfide (COS) are colorless, foul-smelling, volatile sulfur compounds with biocidal properties. Some plants produce CS2 or COS or both. When used as an intercrop or forecrop, these plants may have agronomic potential in protecting other plants. Most of the factors which affect production of these plant-generated organic sulfides are unknown. We determined the effects of sulfate concentration, plant age, nitrogen fixation, drought stress, root injury (through cutting), and undisturbed growth on COS production in Leucaena retusa or Leucaena leucocephala and the effect of some of these factors on CS2 production in Mimosa pudica. In addition, we determined if organic sulfides were produced in all Leucaena species. When L. retusa and M. pudica seedlings were grown in a plant nutrient medium with different sulfate concentrations (50 to 450 mg SL-1), COS or CS2 from crushed roots generally increased with increasing sulfate concentration. COS production was highest (74 ng mg-1 dry root) for young L. retusa seedlings and declined to low amounts (<5 ng mg-1 dry root) for older seedlings. Nitrogen fixation reduced the amounts of COS or CS2 produced in L. leucocephala and M. pudica. Under conditions of undisturbed growth, root cutting, or drought stress, no COS production was detected in 4-to 8-weeks-old L. retusa plants. COS or CS2 or both was obtained from crushed roots or shoots of all 13 known Leucaena species.  相似文献   
218.
219.
Andrea Polle 《Planta》1996,198(2):253-262
It is generally believed that a restricted export of carbohydrates from source leaves causes oxidative stress because of an enhanced utilisation of O2 instead of NADP+ as electron acceptor in photosynthesis. To test this hypothesis, developmental changes of antioxidative systems were investigated in wild-type and transgenic tobacco (Nicotiana tabacum L.) suffering from disturbed sink-source relations by expression of yeast invertase in the apoplastic space. Young expanding leaves of the wild type contained higher activities of Superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), dehydroascorbate reductase (EC 1.8.5.1), glutathione reductase (EC 1.6.4.2) and a higher glutathione content than mature source leaves. The activity of monodehydroascorbate-radical reductase (EC 1.1.5.4) and the ascorbate content remained unaffected by the developmental stage in the wild type. In young expanding leaves of the transgenic plants the capacity of the antioxidative systems was similar to or higher than in corresponding leaves from the wild type. Source leaves of transgenic tobacco with an increased carbohydrate content showed a small chlorophyll loss, an increased malondialdehyde content, a selective loss of the activities of Cu/Zn-superoxide dismutase isoenzymes and a fourfold decrease in ascorbate compared with the wild type. There was no evidence that the protection from H2O2 was insufficient since source leaves of transgenic tobacco contained increased activities of catalase, ascorbate peroxidase, and monodehydroascorbate-radical reductase and an increased ascorbate-to-dehydroascorbate ratio compared with source leaves of the wild type. In severely chlorotic leaf sections of the transgenic plants, most components of the antioxidative system were lower than in green leaf sections, but the ascorbate-to-dehydroascorbate ratio was increased. These results suggest that carbohydrate-accumulating cells have an increased availability of reductant, which can increase the degree of reduction of the ascorbate system via glutathione-related systems or via the activity of monodehydroascorbate-radical reductase. At the same time, transgenic tobacco leaves seem to suffer from an increased oxidative stress, presumably as a result of a decreased consumption of O 2 .- by Cu/Zn-superoxide dismutases in the chloroplasts. There was no evidence that carbohydrate-accumulating leaves acclimated to enhanced O 2 .- production rates in the chloroplasts.  相似文献   
220.
Chilling ofArabidopsis thaliana (L.) Heynh. callus tissue to 4 °C led to conditions of oxidative stress, as indicated by increased levels of the products of peroxidative damage to cell membranes. Cellular H2O2 was also observed to increase initially upon chilling but by day 8 cellular levels had declined to below control levels. Although levels of catalase activity remained similar to those in unchilled tissue, activity of ascorbate peroxidase increased between days 4 and 8 of chilling to 4 °C. In callus held at 23 °C, levels of reduced glutathione remained static whereas they rose in callus held at 4 °C. Levels of oxidised glutathione were initially low but increased significantly by day 4 in the chilled callus. At 23 °C, however, levels of oxidised glutathione remained low. Between days 1 and 3 at 4 °C, levels of glutathione reductase activity increased but by day 8 glutathione reductase activity was similar to that in cells held at 23 °C. Exposure of callus to abscisic acid at 23 °C also led to increased activities of ascorbate peroxidase and glutathione reductase.Abbreviations ABA abscisic acid - GSH reduced glutathione - GSSG oxidised glutathione - TTC 2,35-triphenyltetrazolium chloride This work is supported by a grant from the Biotechnology and Biological Sciences Research Council.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号