首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   688篇
  免费   96篇
  国内免费   19篇
  803篇
  2024年   4篇
  2023年   11篇
  2022年   23篇
  2021年   41篇
  2020年   34篇
  2019年   58篇
  2018年   35篇
  2017年   43篇
  2016年   26篇
  2015年   29篇
  2014年   64篇
  2013年   77篇
  2012年   29篇
  2011年   33篇
  2010年   18篇
  2009年   20篇
  2008年   25篇
  2007年   35篇
  2006年   33篇
  2005年   17篇
  2004年   15篇
  2003年   11篇
  2002年   18篇
  2001年   8篇
  2000年   8篇
  1999年   10篇
  1998年   4篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1986年   4篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
排序方式: 共有803条查询结果,搜索用时 0 毫秒
111.
112.

Object

The wall thickness of intracranial aneurysms (IAs) is heterogeneous. Although thinning of the IA wall is thought to contribute to IA rupture, the underlying mechanism remains poorly understood. Recently, imaging mass spectroscopy (IMS) has been used to reveal the distribution of phospholipids in vascular diseases. To investigate the feature of phospholipid composition of IA walls, we conducted IMS in a rat model of experimentally induced IA.

Material and methods

IAs were surgically induced in 7-week-old male rats and analyzed by IMS in negative-ion mode.

Results

A molecule at m/z 885.5 was more abundant in the thickened wall than in the thinned wall (P = 0.03). Multiple-stage mass spectroscopy revealed the molecule to be phosphatidylinositol containing stearic acid and arachidonic acid (PI 18:0/20:4). Immunohistochemistry indicated that vascular smooth muscle cells (SMCs) in the thickened wall had dedifferentiated phenotypes. To investigate the relationship between accumulation of PI (18:0/20:4) and phenotypic changes in SMCs, we subjected primary mouse aortic SMCs to liquid chromatography–tandem mass spectrometry. Notably, dedifferentiated SMCs had 1.3-fold more PI (18:0/20:4) than partly differentiated SMCs.

Conclusions

Our study demonstrated the heterogeneity in phospholipid composition of the aneurysmal walls using experimentally induced IAs. PI (18:0/20:4) accumulated at high levels in the thickened aneurysmal wall where synthetic dedifferentiated SMCs exist, suggesting that this phospholipid may be involved in the phenotypic switching of medial SMCs in the IA wall.  相似文献   
113.
OKOSUN, IKE S., TERRENCE E. FORRESTER, CHARLES N. ROTIMI, BABATUNDE O. OSOTIMEHIN, WALINJOM F. MUNA, AND RICHARD S. COOPER. Abdominal adiposity in six populations of West African descent: prevalence and population attributable fraction of hypertension. Obes Res. Objectives: The objective of this investigation was to examine the prevalence of abdominal adiposity and its association with the prevalence of hypertension among African descent populations in Nigeria, Cameroon, Jamaica, St. Lucia, Barbados, and the United States (US). Research Method: The data for this investigation were obtained from the International Collaborative Study on Hypertension in Blacks. Hypertension was defined as mean diastolic blood pressure ≥90 mmHg, systolic blood pressure ≥140 mmHg or current treatment with prescribed anti-hypertension medication. Abdominal overweight was defined as waist circumference (WC) ≥94 and ≥80 cm for men and women, respectively. Abdominal obesity was defined as WC ≥102 and ≥88 cm for men and women, respectively. We estimated the site-specific prevalence of abdominal overweight and obesity across age and body mass index cut-points. We also calculated the population attributable fraction (AF) of hypertension due to abdominal adiposity. Results: The prevalence of hypertension in these populations was tightly linked to abdominal adiposity. Increases in abdominal overweight accompanied an increasing degree of Westernization, rising from 6. 4% and 26. 3% in Nigeria, 16. 5% and 62. 8% in Cameroon, 15. 8% and 58. 6% in Jamaica, 14. 3% and 62. 1% in St. Lucia, 21. 4% and 70. 3% in Barbados to 38. 9%, and 76. 4% in the US for men and women, respectively. The corresponding values for abdominal obesity were 1. 6% and 12. 3% in Nigeria, 5. 1% and 38. 9% in Cameroon, 5. 5% and 34. 0% in Jamaica, 2. 7% and 40. 7% in St. Lucia, 7. 8% and 44. 7% in Barbados to 21. 7% and 54. 1% in the US for men and women, respectively. Body mass index-adjusted estimates of AF suggest that in most of these populations, especially in females, avoidance of abdominal overweight or obesity would help to curb the development of hypertension. Discussion: An important public health challenge is to clarify how lifestyle factors influence risks of abdominal adiposity and ultimately the increased risk of cardiovascular diseases.  相似文献   
114.
In an aortic smooth muscle cell line, A10 cells, we investigated the effect of sphingosine 1-phosphate on the induction of heat shock protein 27 (HSP27), a low-molecular-weight heat shock protein. Sphingosine 1-phosphate significantly induced the accumulation of HSP27 in a pertussis toxin-sensitive manner. The effect was dose-dependent in the range between 0.1 and 30 microM. Sphingosine 1-phosphate stimulated an increase in the levels of mRNA for HSP27. Sphingosine 1-phosphate stimulated both p42/p44 mitogen-activated protein (MAP) kinase and p38 MAP kinase activation. PD98059, an inhibitor of the upstream kinase that activates p42/p44 MAP kinase, did not affect sphingosine 1-phosphate-stimulated HSP27 induction. In contrast, SB203580, an inhibitor of p38 MAP kinase, reduced sphingosine 1-phosphate-induced HSP27 induction. SB203580 reduced the levels of mRNA for HSP27 induced by sphingosine 1-phosphate. These results indicate that sphingosine 1-phosphate stimulates the induction of HSP27 via p38 MAP kinase activation in aortic smooth muscle cells.  相似文献   
115.
Valve disease and particularly calcific aortic valve disease (CAVD) and diabetes (DM) are progressive diseases constituting a global health burden for all aging societies (Progress in Cardiovascular Diseases. 2014;56(6):565: Circulation Research. 2021;128(9):1344). Compared to non-diabetic individuals (The Lancet. 2008;371(9626):1800: The American Journal of Cardiology. 1983;51(3):403: Journal of the American College of Cardiology. 2017;69(12):1523), the diabetic patients have a significantly greater propensity for cardiovascular disorders and faster degeneration of implanted bioprosthetic aortic valves. Previously, using an original experimental model, the diabetic-hyperlipemic hamsters, we have shown that the earliest alterations induced by these conditions occur at the level of the aortic valves and, with time these changes lead to calcifications and CAVD. However, there are no pharmacological treatments available to reverse or retard the progression of aortic valve disease in diabetes, despite the significant advances in the field. Therefore, it is critical to uncover the mechanisms of valve disease progression, find biomarkers for diagnosis and new targets for therapies. This review aims at presenting an update on the basic research in CAVD in the context of diabetes. We provide an insight into the accumulated data including our results on diabetes-induced progressive cell and molecular alterations in the aortic valve, new potential biomarkers to assess the evolution and therapy of the disease, advancement in targeted nanotherapies, tissue engineering and the potential use of circulating endothelial progenitor cells in CAVD.  相似文献   
116.
Bicuspid aortic valves (BAVs) generate flow abnormalities that may promote aortopathy. While positive helix fraction (PHF) index, flow angle (θ), flow displacement (d) and wall shear stress (WSS) exhibit abnormalities in dilated BAV aortas, it is unclear whether those anomalies stem from the abnormal valve anatomy or the dilated aorta. Therefore, the objective of this study was to quantify the early impact of different BAV morphotypes on aorta hemodynamics prior to dilation. Fluid-structure interaction models were designed to quantify standard peak-systolic flow metrics and temporal WSS characteristics in a realistic non-dilated aorta connected to functional tricuspid aortic valve (TAV) and type-I BAVs. While BAVs generated increased helicity (PHF>0.68) in the middle ascending aorta (AA), larger systolic flow skewness (θ>11.2°) and displacement (d>6.8 mm) relative to the TAV (PHF=0.51; θ<5.5°; d<3.3 mm), no distinct pattern was observed between morphotypes. In contrast, WSS magnitude and directionality abnormalities were BAV morphotype- and site-dependent. Type-I BAVs subjected the AA convexity to peak-systolic WSS overloads (up to 1014% difference vs. TAV). While all BAVs increased WSS unidirectionality on the proximal AA relative to the TAV, the most significant abnormality was achieved by the BAV with left-right-coronary cusp fusion on the wall convexity (up to 0.26 decrease in oscillatory shear index vs. TAV). The results indicate the existence of strong hemodynamic abnormalities in non-dilated type-I BAV AAs, their colocalization with sites vulnerable to dilation and the superior specificity of WSS metrics over global hemodynamic metrics to the valve anatomy.  相似文献   
117.
Bicuspid aortic valve (BAV), i.e. the fusion of two aortic valve cusps, is the most frequent congenital cardiac malformation. Its progression is often characterized by accelerated leaflet calcification and aortic wall dilation. These processes are likely enhanced by altered biomechanical stimuli, including fluid-dynamic wall shear stresses (WSS) acting on both the aortic wall and the aortic valve. Several studies have proposed the exploitation of 4D-flow magnetic resonance imaging sequences to characterize abnormal in vivo WSS in BAV-affected patients, to support prognosis and timing of intervention. However, current methods fail to quantify WSS peak values.On this basis, we developed two new methods for the improved quantification of in vivo WSS acting on the aortic wall based on 4D-flow data.We tested both methods separately and in combination on synthetic datasets obtained by two computational fluid-dynamics (CFD) models of the aorta with healthy and bicuspid aortic valve. Tests highlighted the need for data spatial resolution at least comparable to current clinical guidelines, the low sensitivity of the methods to data noise, and their capability, when used jointly, to compute more realistic peak WSS values as compared to state-of-the-art methods.The integrated application of the two methods on the real 4D-flow data from a preliminary cohort of three healthy volunteers and three BAV-affected patients confirmed these indications. In particular, quantified WSS peak values were one order of magnitude higher than those reported in previous 4D-flow studies, and much closer to those computed by highly time- and space-resolved CFD simulations.  相似文献   
118.
An aortic aneurysm(AA) is a silent but life-threatening disease that involves rupture. It occurs mainly in aging and severe atherosclerotic damage of the aortic wall. Even though surgical intervention is effective to prevent rupture, surgery for the thoracic and thoraco-abdom-inal aorta is an invasive procedure with high mortality and morbidity. Therefore, an alternative strategy for treatment of AA is required. Recently, the molecular pathology of AA has been clarified. AA is caused by an imbalance between the synthesis and degradation of extracellular matrices in the aortic wall. Chronic inflam-mation enhances the degradation of matrices directly and indirectly, making control of the chronic inflamma-tion crucial for aneurysmal development. Meanwhile, mesenchymal stem cells(MSCs) are known to be ob-tained from an adult population and to differentiate into various types of cells. In addition, MSCs have not only the potential anti-inflammatory and immunosuppres-sive properties but also can be recruited into damagedtissue. MSCs have been widely used as a source for celltherapy to treat various diseases involving graft-versus-host disease, stroke, myocardial infarction, and chronicinflammatory disease such as Crohn's disease clinically.Therefore, administration of MSCs might be availableto treat AA using anti-inflammatory and immnosup-pressive properties. This review provides a summary ofseveral studies on "Cell Therapy for Aortic Aneurysm"including our recent data, and we also discuss the pos-sibility of this kind of treatment.  相似文献   
119.
Fibronectin (FN) fibrillogenesis is an essential biological process mediated by α5β1 integrin and cellular contractile forces. Assembly of a FN matrix by activated endothelial cells occurs during angiogenic blood vessel remodeling and signaling components that control this event represent attractive therapeutic targets. Here we examined the role of individual Rho GTPases in FN matrix remodeling by selectively attenuating their expression in cultured endothelial cells. Whereas pharmacological ablation of myosin-regulated contractility abrogated matrix assembly, no significant decrease was detected in the amount of FN deposited by RhoA, RhoB-, RhoC-, Rac1-, or Cdc42-depleted cells. Rather, distinct differences in fiber arrangement were observed. Most strikingly, RhoA silenced cells assembled a fine FN meshwork beneath α5β1 integrin-based fibrillar adhesions, in the absence of classical focal adhesions and actin stress fibers, indicating that α5β1 integrin translocation and FN fibril elongation can occur in low tension states such as those encountered by newly-forming vessels in tissue. In contrast, highly contractile Cdc42-deficient cells deposited FN globules and Rac-deficient cells assembled long arrays, reflecting their increased motility. We propose that regulation of FN scaffolds by Rho GTPase signaling impacts bidirectional communications and mechanical interactions between endothelial cells and their extracellular matrix during vascular morphogenesis.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号