首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1594篇
  免费   165篇
  国内免费   10篇
  2024年   5篇
  2023年   26篇
  2022年   32篇
  2021年   51篇
  2020年   80篇
  2019年   92篇
  2018年   105篇
  2017年   73篇
  2016年   75篇
  2015年   66篇
  2014年   89篇
  2013年   225篇
  2012年   46篇
  2011年   78篇
  2010年   52篇
  2009年   65篇
  2008年   72篇
  2007年   68篇
  2006年   75篇
  2005年   65篇
  2004年   59篇
  2003年   42篇
  2002年   43篇
  2001年   22篇
  2000年   27篇
  1999年   26篇
  1998年   21篇
  1997年   16篇
  1996年   19篇
  1995年   11篇
  1994年   10篇
  1993年   11篇
  1992年   4篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有1769条查询结果,搜索用时 421 毫秒
71.
Cytochrome P450 reductase (CYPOR) undergoes a large conformational change to allow for an electron transfer to a redox partner to take place. After an internal electron transfer over its cofactors, it opens up to facilitate the interaction and electron transfer with a cytochrome P450. The open conformation appears difficult to crystallize. Therefore, a model of a human CYPOR in the open conformation was constructed to be able to investigate the stability and conformational change of this protein by means of molecular dynamics simulations. Since the role of the protein is to provide electrons to a redox partner, the interactions with cytochrome P450 2D6 (2D6) were investigated and a possible complex structure is suggested. Additionally, electron pathway calculations with a newly written program were performed to investigate which amino acids relay the electrons from the FMN cofactor of CYPOR to the HEME of 2D6. Several possible interacting amino acids in the complex, as well as a possible electron transfer pathway were identified and open the way for further investigation by site directed mutagenesis studies.  相似文献   
72.
A simulation module is built into the software package colony to simulate marker genotype data of individuals with a predefined parentage and sibship structure. The simulated data can then be used to compare the accuracy, robustness and computational efficiency of different methods for sibship and parentage reconstruction, to examine the impact of different parameter options in a software on its accuracy and computational efficiency and to assess the information sufficiency of a given set of markers for a sibship and parentage analysis. This computer note describes the method used for simulating genotype data with a pedigree and its possible applications. The method can quickly generate genotype data for a one‐ or two‐generation pedigree of virtually any complexity with up to 30k offspring, at up to 30k codominant or dominant loci with an arbitrary degree of linkage and a user‐defined mistyping rate. The data can be fed directly into the colony program for analysis by three sibship and parentage reconstruction methods and can also be imported into other programs such as Excel and R. With slight modification, the data can be analysed by other relationship analysis software.  相似文献   
73.
Mantel‐based tests have been the primary analytical methods for understanding how landscape features influence observed spatial genetic structure. Simulation studies examining Mantel‐based approaches have highlighted major challenges associated with the use of such tests and fueled debate on when the Mantel test is appropriate for landscape genetics studies. We aim to provide some clarity in this debate using spatially explicit, individual‐based, genetic simulations to examine the effects of the following on the performance of Mantel‐based methods: (1) landscape configuration, (2) spatial genetic nonequilibrium, (3) nonlinear relationships between genetic and cost distances, and (4) correlation among cost distances derived from competing resistance models. Under most conditions, Mantel‐based methods performed poorly. Causal modeling identified the true model only 22% of the time. Using relative support and simple Mantel r values boosted performance to approximately 50%. Across all methods, performance increased when landscapes were more fragmented, spatial genetic equilibrium was reached, and the relationship between cost distance and genetic distance was linearized. Performance depended on cost distance correlations among resistance models rather than cell‐wise resistance correlations. Given these results, we suggest that the use of Mantel tests with linearized relationships is appropriate for discriminating among resistance models that have cost distance correlations <0.85 with each other for causal modeling, or <0.95 for relative support or simple Mantel r. Because most alternative parameterizations of resistance for the same landscape variable will result in highly correlated cost distances, the use of Mantel test‐based methods to fine‐tune resistance values will often not be effective.  相似文献   
74.
Bond‐orientational correlations for finite‐length homopolypeptides and a selected group of denatured proteins are obtained by numerical simulations using a polypeptide model with a potential of mean force. These correlations characterize the stiffness of the polypeptide backbone and are generally described by either an exponential or a power‐law decay in the asymptotic limit. However, for finite length polypeptides and unfolded proteins the correlations significantly deviate from either single exponential or power‐law behavior. A heuristic model is developed to analyze the correlations of homopolypeptides, which depends on the chain length and the side‐chain properties. The model contains power‐law and multi‐exponential terms, the latter which could be interpreted as local persistence lengths. In the asymptotic limit, the model reduces to the expected power‐law behavior. Simulations of denatured proteins show that the power‐law behavior of the correlations is significantly suppressed and only the multi‐exponential term is needed to model the correlations. In addition, average persistence lengths (ranging from 2.0 to 2.5 nm) are obtained from the correlations by fitting single exponentials and shown to be in general agreement with experiments, which also assume single exponential decay. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 312–323, 2016.  相似文献   
75.
A series of hydroxy and phenolic compounds have been assayed for the inhibition of two physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic human isozymes I and II. The investigated molecules showed inhibition constants in the range of 1.07–4003 and 0.09–31.5?μM at the hCA I and hCA II enzymes, respectively. In order to investigate the binding mechanisms of these inhibitors, in silico studies were also applied. Molecular docking scores of the studied compounds are compared using three different scoring algorithms, namely Glide/SP, Glide/XP and Glide/IFD. In addition, different ADME (absorption, distribution, metabolism and excretion) analysis was performed. All the examined compounds were found within the acceptable range of pharmacokinetic profiles.  相似文献   
76.
The rational design of high-affinity inhibitors of poly-ADP-ribose polymerase-1 (PARP-1) is at the heart of modern anti-cancer drug design. While relevance of enzyme to DNA repair processes in cellular environment is firmly established, the structural and functional understanding of the main determinants for high-affinity ligands controlling PARP-1 activity is still lacking. The conserved active site of PARP-1 represents an ideal target for inhibitors and may offer a novel target at the treatment of breast cancer. To fill the gap in the structural knowledge, we report on the combination of molecular dynamics (MD) simulations, principal component analysis (PCA), and conformational analysis that analyzes in great details novel binding mode for a number of inhibitors at the PARP-1. While optimization of the binding affinity for original target is an important goal in the drug design, many of the promising molecules for treatment of the breast cancer are plagued by significant cardiotoxicity. One of the most common side-effects reported for a number of polymerase inhibitors is its off-target interactions with cardiac ion channels and hERG1 channel, in particular. Thus, selected candidate PARP-1 inhibitors were also screened in silico at the central cavities of hERG1 potassium ion channel.  相似文献   
77.
Malonyl‐CoA decarboxylase (MCD) can control the level of malonyl‐CoA in cell through the decarboxylation of malonyl‐CoA to acetyl‐CoA, and plays an essential role in regulating fatty acid metabolism, thus it is a potential target for drug discovery. However, the interactions of MCD with CoA derivatives are not well understood owing to unavailable crystal structure with a complete occupancy in the active site. To identify the active site of MCD, molecular docking and molecular dynamics simulations were performed to explore the interactions of human mitochondrial MCD (HmMCD) and CoA derivatives. The findings reveal that the active site of HmMCD indeed resides in the prominent groove which resembles that of CurA. However, the binding modes are slightly different from the one observed in CurA due to the occupancy of the side chain of Lys183 from the N‐terminal helical domain instead of the adenine ring of CoA. The residues 300 ? 305 play an essential role in maintaining the stability of complex mainly through hydrogen bond interactions with the pyrophosphate moiety of acetyl‐CoA. Principle component analysis elucidates the conformational distribution and dominant concerted motions of HmMCD. MM_PBSA calculations present the crucial residues and the major driving force responsible for the binding of acetyl‐CoA. These results provide useful information for understanding the interactions of HmMCD with CoA derivatives. Proteins 2016; 84:792–802. © 2016 Wiley Periodicals, Inc.  相似文献   
78.
d ‐Amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Unnatural amino acids have been introduced into proteins using engineered aminoacyl‐tRNA synthetases (aaRSs), and this strategy might be applicable to d ‐amino acids. Several aaRSs can aminoacylate their tRNA with a d ‐amino acid; of these, tyrosyl‐tRNA synthetase (TyrRS) has the weakest stereospecificity. We use computational protein design to suggest active site mutations in Escherichia coli TyrRS that could increase its d ‐Tyr binding further, relative to l ‐Tyr. The mutations selected all modify one or more sidechain charges in the Tyr binding pocket. We test their effect by probing the aminoacyl‐adenylation reaction through pyrophosphate exchange experiments. We also perform extensive alchemical free energy simulations to obtain l ‐Tyr/d ‐Tyr binding free energy differences. Agreement with experiment is good, validating the structural models and detailed thermodynamic predictions the simulations provide. The TyrRS stereospecificity proves hard to engineer through charge‐altering mutations in the first and second coordination shells of the Tyr ammonium group. Of six mutants tested, two are active towards d ‐Tyr; one of these has an inverted stereospecificity, with a large preference for d ‐Tyr. However, its activity is low. Evidently, the TyrRS stereospecificity is robust towards charge rearrangements near the ligand. Future design may have to consider more distant and/or electrically neutral target mutations, and possibly design for binding of the transition state, whose structure however can only be modeled. Proteins 2016; 84:240–253. © 2015 Wiley Periodicals, Inc.  相似文献   
79.
Hypoxanthine‐guanine‐xanthine phosphoribosyltransference (HGXPRT), a key enzyme in the purine salvage pathway of the malarial parasite, Plasmodium falciparum (Pf), catalyses the conversion of hypoxanthine, guanine, and xanthine to their corresponding mononucleotides; IMP, GMP, and XMP, respectively. Out of the five active site loops (I, II, III, III', and IV) in PfHGXPRT, loop III' facilitates the closure of the hood over the core domain which is the penultimate step during enzymatic catalysis. PfHGXPRT mutants were constructed wherein Trp 181 in loop III' was substituted with Ser, Thr, Tyr, and Phe. The mutants (W181S, W181Y and W181F), when examined for xanthine phosphoribosylation activity, showed an increase in Km for PRPP by 2.1‐3.4 fold under unactivated condition and a decrease in catalytic efficiency by more than 5‐fold under activated condition as compared to that of the wild‐type enzyme. The W181T mutant showed 10‐fold reduced xanthine phosphoribosylation activity. Furthermore, molecular dynamics simulations of WT and in silico W181S/Y/F/T PfHGXPRT mutants bound to IMP.PPi.Mg2+ have been carried out to address the effect of the mutation of W181 on the overall dynamics of the systems and identify local changes in loop III'. Dynamic cross‐correlation analyses show a communication between loop III' and the substrate binding site. Differential cross‐correlation maps indicate altered communication among different regions in the mutants. Changes in the local contacts and hydrogen bonding between residue 181 with the nearby residues cause altered substrate affinity and catalytic efficiency of the mutant enzymes. Proteins 2016; 84:1658–1669. © 2016 Wiley Periodicals, Inc.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号