首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1599篇
  免费   165篇
  国内免费   10篇
  2024年   7篇
  2023年   27篇
  2022年   34篇
  2021年   51篇
  2020年   80篇
  2019年   92篇
  2018年   105篇
  2017年   73篇
  2016年   75篇
  2015年   66篇
  2014年   89篇
  2013年   225篇
  2012年   46篇
  2011年   78篇
  2010年   52篇
  2009年   65篇
  2008年   72篇
  2007年   68篇
  2006年   75篇
  2005年   65篇
  2004年   59篇
  2003年   42篇
  2002年   43篇
  2001年   22篇
  2000年   27篇
  1999年   26篇
  1998年   21篇
  1997年   16篇
  1996年   19篇
  1995年   11篇
  1994年   10篇
  1993年   11篇
  1992年   4篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有1774条查询结果,搜索用时 15 毫秒
51.
In this work, the Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 2-aminobiphenyl (2ABP) were recorded in the solid phase. The optimised geometry, frequency and intensity of the vibrational bands of 2ABP were obtained by the density functional theory (BLYP and B3LYP) methods with complete relaxation in the potential energy surface using 6-31G(d) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed spectrograms.  相似文献   
52.
In continuation of our work on the conformational analysis of succinic acid (SA) and maleic acid (MA) in different solvents, we present here the experimental dielectric and IR and also the ab initio Hartree–Fock calculations of the two dicarboxylic acids in tetrahydrofuran (THF). The dielectric measurements are carried out at microwave X-band frequency of 9.7 GHz and the calculations are performed at STO-3G and 6-31G(d) basis sets. The dielectric data and the dipole moment determined experimentally are compared with the dipole moment determined from the conformal analysis. It is seen that the dielectric properties of SA/MA in THF are much different from that of SA/MA in 1-4, dioxane (1-4D) that we had reported previously. The IR spectra of SA–THF system is also reported here. The present study indicates the possible formation of nano-clusters of SA/MA in THF due to incomplete solvation by THF.  相似文献   
53.
Abstract

Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis (M.tb) or tubercule bacillus, and H37Rv is the most studied clinical strain. The recent development of resistance to existing drugs is a global health-care challenge to control and cure TB. Hence, there is a critical need to discover new drug targets in M.tb. The members of peptidoglycan biosynthesis pathway are attractive target proteins for antibacterial drug development. We have performed in silico analysis of M.tb MraY (Rv2156c) integral membrane protein and constructed the three-dimensional (3D) structure model of M.tb MraY based on homology modeling method. The validated model was complexed with antibiotic muraymycin D2 (MD2) and was used to generate structure-based pharmacophore model (e-pharmacophore). High-throughput virtual screening (HTVS) of Asinex database and molecular docking of hits was performed to identify the potential inhibitors based on their mode of interactions with the key residues involved in M.tb MraY–MD2 binding. The validation of these molecules was performed using molecular dynamics (MD) simulations for two best identified hit molecules complexed with M.tb MraY in the lipid bilayer, dipalmitoylphosphatidyl-choline (DPPC) membrane. The results indicated the stability of the complexes formed and retained non-bonding interactions similar to MD2. These findings may help in the design of new inhibitors to M.tb MraY involved in peptidoglycan biosynthesis.  相似文献   
54.
In this work, we carried out a theoretical investigation regarding amphetamine-type stimulants, which can cause central nervous system degeneration, interacting with human DNA. These include amphetamine, methamphetamine, 3,4-Methylenedioxymethamphetamine (also known as ecstasy), as well as their main metabolites. The studies were performed through molecular docking and molecular dynamics simulations, where molecular interactions of the receptor–ligand systems, along with their physical–chemical energies, were reported. Our results show that 3,4-Methylenedioxymethamphetamine and 3,4-Dihydroxymethamphetamine (ecstasy) present considerable reactivity with the receptor (DNA), suggesting that these molecules may cause damage due to human-DNA. These results were indicated by free Gibbs change of bind (ΔGbind) values referring to intermolecular interactions between the drugs and the minor grooves of DNA, which were predominant for all simulations. In addition, it was observed that 3,4-Dihydroxymethamphetamine (ΔGbind = ?13.15 kcal/mol) presented greater spontaneity in establishing interactions with DNA in comparison to 3,4-Methylenedioxymethamphetamine (ΔGbind = ?8.61 kcal/mol). Thus, according with the calculations performed our results suggest that the 3,4-Methylenedioxymethamphetamine and 3,4-Dihydroxymethamphetamine have greater probability to provide damage to human DNA fragments.  相似文献   
55.
Abstract

Reaching the experimental time scale of millisecond is a grand challenge for protein folding simulations. The development of advanced Molecular Dynamics techniques like Replica Exchange Molecular Dynamics (REMD) makes it possible to reach these experimental timescales. In this study, an attempt has been made to reach the multi microsecond simulation time scale by carrying out folding simulations on a three helix bundle protein, Villin, by combining REMD and Amber United Atom model. Twenty replicas having different temperatures ranging from 295 K to 390 K were simulated for 1.5 μs each. The lowest Root Mean Square Deviation (RMSD) structure of 2.5 Å was obtained with respect to native structure (PDB code 1VII), with all the helices formed. The folding population landscapes were built using segment-wise RMSD and Principal Components as reaction coordinates. These analyses suggest the two-stage folding for Villin. The combination of REMD and Amber United Atom model may be useful to understand the folding mechanism of various fast folding proteins  相似文献   
56.
Abstract

In this study, various 400 ps molecular dynamics simulations were conducted to determine the stabilizing effect of O-glycosylation on the secondary structural integrity of the design α-loop-α motif, which has the optimal loop length of 7 Gly residues (denoted as N-A16G7A16-C). In general, O-glycosylation stabilizes the structural integrity of the model peptide regardless of the length and position of glycosylation sites because it decreases the opportunity for water molecules to compete for the intramolecular hydrogen bonds. The designed peptide exhibits the highest helicity when residues 11 and 31 are replaced with Ser residues followed by O-linked with 3 galactose residues, representing the “face-to-face” glycosylation near the loop. In this case, the loop exhibits an extended conformation and several new hydrogen bonds are observed between the main chain of the loop and the galactose residues, resulting in decreasing the fluctuation and increasing the stability of the entire peptide. When the glycosylation are made close to the loop, the secondary structural integrity of the α-loop-α motif increases with the number of galactose residues. In addition, “face- to-face” glycosylation increases the structural integrity of this motif to a greater extent than “back-to-back” glycosylation. However, when the glycosylation are created away from the loop and near the N- and C-termini, no general rule is found for the stabilizing effect.  相似文献   
57.
Abstract

Proteins with the ability to specifically bind strontium would potentially be of great use in the field of nuclear waste management. Unfortunately, no such peptides or proteins are known—indeed, it is uncertain whether they exist under natural conditions due to low environmental concentrations of strontium. To investigate the possibility of devising such molecules, one of us (CV), in a previous experimental study [J. Biol. Inorg. Chem. 8, 33440 (2003)], proposed starting from an EF-hand motif of the protein calmodulin and mutating some residues to change the motif's specificity for calcium into one for strontium. In this paper, which represents a theoretical complement to the experimental work, we analyzed small-molecule crystallographic structures and performed quantum chemical calculations to identify possible mutations. We then constructed seven mutant sequences of the EF-hand motif and analyzed their dynamical and binding behaviors using molecular dynamics simulations and free-energy calculations (using the MM/PBSA method). As a result of these analyzes we were able to isolate some characteristics that could lead to mutant peptides with enhanced strontium affinity.  相似文献   
58.
Abstract

Huntington's disease is a neurodegenerative disorder caused by a polyglutamine (polyQ) expansion near the N-terminus of huntingtin. Previous studies have suggested that polyQ aggregation occurs only when the number of glutamine (Q) residues is more than 36-40, the disease threshold. However, the structural characteristics of polyQ nucleation in the very early stage of aggregation still remain elusive. In this study, we designed 18 simulation trials to determine the possible structural models for polyQ nucleation and aggregation with various shapes and sizes of initial β-helical structures, such as left-handed circular, right-handed rectangular, and left- and right-handed triangular. Our results show that the stability of these models significantly increases with increasing the number of rungs, while it is rather insensitive to the number of Qs in each rung. In particular, the 3-rung β-helical models are stable when they adopt the left-handed triangular and right-handed rectangular conformations due to the fact that they preserve high β-turn and β-sheet contents, respectively, during the simulation courses. Thus, we suggested that these two stable β-helical structures with at least 3 rungs might serve as the possible nucleation seeds for polyQ depending on how the structural elements of β-turn and β-sheet are sampled and preserved during the very early stage of aggregation.  相似文献   
59.
Aspartate β-semialdehyde dehydrogenase (ASADH) is a key enzyme for the biosynthesis of essential amino acids and several important metabolites in microbes. Inhibition of ASADH enzyme is a promising drug target strategy against Mycobacterium tuberculosis (Mtb). In this work, in silico approach was used to identify potent inhibitors of Mtb-ASADH. Aspartyl β-difluorophosphonate (β-AFP), a known lead compound, was used to understand the molecular recognition interactions (using molecular docking and molecular dynamics analysis). This analysis helped in validating the computational protocol and established the participation of Arg99, Glu224, Cys130, Arg249, and His256 amino acids as the key amino acids in stabilizing ligand–enzyme interactions for effective binding, an essential feature is H-bonding interactions with the two arginyl residues at the two ends of the ligand. Best binding conformation of β-AFP was selected as a template for shape-based virtual screening (ZINC and NCI databases) to identify compounds that competitively inhibit the Mtb-ASADH. The top rank hits were further subjected to ADME and toxicity filters. Final filter was based on molecular docking analysis. Each screened molecule carries the characteristics of the highly electronegative groups on both sides separated by an average distance of 6?Å. Finally, the best predicted 20 compounds exhibited minimum three H-bonding interactions with Arg99 and Arg249. These identified hits can be further used for designing the more potent inhibitors against ASADH family. MD simulations were also performed on two selected compounds (NSC4862 and ZINC02534243) for further validation. During the MD simulations, both compounds showed same H-bonding interactions and remained bound to key active residues of Mtb-ASADH.  相似文献   
60.
Structural information over the entire course of binding interactions based on the analyses of energy landscapes is described, which provides a framework to understand the events involved during biomolecular recognition. Conformational dynamics of malectin’s exquisite selectivity for diglucosylated N-glycan (Dig-N-glycan), a highly flexible oligosaccharide comprising of numerous dihedral torsion angles, are described as an example. For this purpose, a novel approach based on hierarchical sampling for acquiring metastable molecular conformations constituting low-energy minima for understanding the structural features involved in a biologic recognition is proposed. For this purpose, four variants of principal component analysis were employed recursively in both Cartesian space and dihedral angles space that are characterized by free energy landscapes to select the most stable conformational substates. Subsequently, k-means clustering algorithm was implemented for geometric separation of the major native state to acquire a final ensemble of metastable conformers. A comparison of malectin complexes was then performed to characterize their conformational properties. Analyses of stereochemical metrics and other concerted binding events revealed surface complementarity, cooperative and bidentate hydrogen bonds, water-mediated hydrogen bonds, carbohydrate–aromatic interactions including CH–π and stacking interactions involved in this recognition. Additionally, a striking structural transition from loop to β-strands in malectin CRD upon specific binding to Dig-N-glycan is observed. The interplay of the above-mentioned binding events in malectin and Dig-N-glycan supports an extended conformational selection model as the underlying binding mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号