首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3884篇
  免费   128篇
  国内免费   379篇
  2024年   15篇
  2023年   51篇
  2022年   59篇
  2021年   70篇
  2020年   63篇
  2019年   94篇
  2018年   60篇
  2017年   57篇
  2016年   52篇
  2015年   73篇
  2014年   104篇
  2013年   185篇
  2012年   111篇
  2011年   118篇
  2010年   92篇
  2009年   171篇
  2008年   192篇
  2007年   222篇
  2006年   203篇
  2005年   217篇
  2004年   220篇
  2003年   165篇
  2002年   155篇
  2001年   140篇
  2000年   156篇
  1999年   119篇
  1998年   106篇
  1997年   90篇
  1996年   97篇
  1995年   94篇
  1994年   85篇
  1993年   74篇
  1992年   97篇
  1991年   79篇
  1990年   49篇
  1989年   54篇
  1988年   49篇
  1987年   58篇
  1986年   37篇
  1985年   48篇
  1984年   46篇
  1983年   15篇
  1982年   24篇
  1981年   22篇
  1980年   24篇
  1979年   26篇
  1978年   20篇
  1977年   6篇
  1976年   11篇
  1974年   6篇
排序方式: 共有4391条查询结果,搜索用时 15 毫秒
991.
A sweet potato (Ipomoea batatas cv. Tainong 57) trypsin inhibitor gene was introduced into tobacco plants (Nicotiana tabaccum cv. W38) by Agrobacterium tumefaciens– mediated transformation. From 30 independent transformants, three lines with high level of expression were further analyzed. The trypsin inhibitor gene, under control of the 35S CaMV promoter, led to the production of the trypsin inhibitor proteins up to 0.2% of the total protein. In insecticidal bioassays of transgenic tobacco plants, larval, growth of Spodoptera litura (F.), the tobacco cutworm, was severely retarded as compared to their growth on control plants. This observation implied that expression of sweet potato trypsin inhibitor can provide an efficient method for crop protection. Received: 29 July 1996 / Revision received: 15 November 1996 / Accepted: 8 December 1996  相似文献   
992.
993.
Aims: To develop a fast, convenient, inexpensive and efficient Escherichia coli transformation method for changing hosts of plasmids, which can also facilitate the selection of positive clones after DNA ligation and transformation. Methods and Results: A single fresh colony from plasmid‐containing donor strain is picked up and suspended in 75% ethanol. Cells are pelleted and resuspended in CaCl2 solution and lysed by repetitive freeze–thaw cycles to obtain plasmid‐containing cell lysate. The E. coli recipient cells are scraped from the lawn of LB plate and directly suspended in the plasmid‐containing cell lysate for transformation. Additionally, a process based on colony‐to‐lawn transformation and protein expression was designed and conveniently used to screen positive clones after DNA ligation and transformation. Conclusions: With this method, a single colony from plasmid‐containing donor strain can be directly used to transform recipient cells scraped from lawn of LB plate. Additionally, in combination with this method, screening of positive clones after DNA ligation and transformation can be convenient and time‐saving. Significance and Impact of the Study: Compared with current methods, this procedure saves the steps of plasmid extraction and competent cell preparation. Therefore, the method should be highly valuable especially for high‐throughput changing hosts of plasmids during mutant library creation.  相似文献   
994.
995.
Regeneration of plants from cultured cells is an important and essential component of plant biotechnology. Advances in the recovery of plants from cultured cells and protoplasts of grasses, and in genetic transformation provide challenging opportunities for the genetic manipulation and improvement of this most important group of food plants.  相似文献   
996.
997.
For curved exponential models, the modified profile likelihoodand the modified directed likelihood are approximated, witherror 0(n-1) under ordinary repeated sampling, by explicitlydefined and invariant quantities which do not require specificationof an ancillary and which are stable in the sense of havingthe appropriate conditionality property with respect to anyreasonable ancillary.  相似文献   
998.
Laboratory and field tracer experiments with 14C-labelled senecionine N–oxide (SO) and distant biosynthetic precursors such as [14C]putrescine revealed that pyrrolizidine alkaloid N-oxides (PAs) in Senecio vernalis Waldstr. & Kit. (Asteraceae) show no significant turnover over periods of up to 29 d. However, PAs are spatially mobile, they are continuously allocated, and labelled PAs are even detectable in leaves and capitula developed weeks after tracer application. Chemical diversification of SO, the common product of PA biosynthesis in roots, was studied in five Senecio species (i.e. S. vernalis Waldstr. & Kit., S. vulgaris L, S. inaequidens DC, two chemotypes of S. jacobaea L. and S. erucifolius L.). Tracer experiments revealed that shoots are capable of transforming [14 C]SO into the unique species–specific PA patterns. Within a plant, the transformation efficiency of SO can vary quantitatively and qualitatively between shoot organs (i.e. leaves, stems and inflorescences). All transformations proceed position-specifically and stereoselectively. They comprise simple one-step or two-step reactions such as hydroxylations, epoxidations, dehydrogenations, and O-acetylations, as well as the more complex conversion of the retronecine into the otonecine base moiety (e.g. SO into senkirkine). Taking all the evidence together, the qualitative and quantitative composition of the Senecio PA pattern is a dynamic and sensitive equilibrium between a number of interacting processes: (i) constant rate of de-novo synthesis of SO in roots, (ii) continuous long-distance translocation of SO into shoots, (iii) efficiency of SO transformations which may vary between plant organs, (iv) continuous allocation of PAs in the plant, and (v) efficiency and tissue selectivity of vacuolar storage. We suggest that in constitutive plant defence, without significant turnover of its components, such a highly plastic system provides a powerful strategy to successfully defend and possibly escape herbivory. Received: 27 March 1998 / Accepted: 19 May 1998  相似文献   
999.
The paper presents a testing procedure verifying the hypothesis about the normal distribution of random components in a mixed model of a two-way nested classification. The basis for this application is a simple sample obtained from orthogonal and the O'Reilly-Quesenberry transformation to the residual vector from the method of least squares (MLS).  相似文献   
1000.
Soil isolates of Pseudomonas stutzeri have been shown previously to acquire genes by natural transformation. In this study a marine isolate, Pseudomonas stutzeri strain ZoBell, formerly Pseudomonas perfectomarina, was also shown to transform naturally. Transformation was detected by the Juni plate method and frequencies of transformation were determined by filter transformation procedures. Maximum frequencies of transformation were detected for three independent antibiotic resistance loci. Transformation frequencies were on the order of 4×10-5 transformants per recipient, a frequency over 100 times that of spontancous antibiotic resistance. Transfer of antibiotic resistance was inhibited by DNase I digestion. Marine isolates achieved maximum competence 14 h after transfer of exponential cultures to filters on solid media, although lower levels of competence were detected immediately following filter immobilization. Like soil isolates, P. stutzeri strain ZoBell is capable of cell contact transformation, but unlike soil isolates where transformation frequencies are greater for cell contact transformation as compared to transformation with purified DNA, the maximum frequency of transformation achieved by cell contact in the marine strain was approximately 10-fold less than transformation frequencies with purified DNA. These studies establish the first marine model for the study of natural transformation.This paper is dedicated to John L. Ingraham, Professor Emeritus of Microbiology at the University of California, Davis. Professor Ingraham was the first person to recognize natural transformation in Pseudomonas stutzeri and has continued to contribute to our understanding of the process over the past eight years. This understanding of the genetics of P. stutzeri is only one of the many areas of microbiology to which Professor Ingraham has contributed in his exceptional career  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号