首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3879篇
  免费   128篇
  国内免费   378篇
  2024年   12篇
  2023年   49篇
  2022年   58篇
  2021年   70篇
  2020年   63篇
  2019年   94篇
  2018年   60篇
  2017年   57篇
  2016年   52篇
  2015年   73篇
  2014年   104篇
  2013年   185篇
  2012年   111篇
  2011年   118篇
  2010年   92篇
  2009年   171篇
  2008年   192篇
  2007年   222篇
  2006年   203篇
  2005年   217篇
  2004年   220篇
  2003年   165篇
  2002年   155篇
  2001年   140篇
  2000年   156篇
  1999年   119篇
  1998年   106篇
  1997年   90篇
  1996年   97篇
  1995年   94篇
  1994年   85篇
  1993年   74篇
  1992年   97篇
  1991年   79篇
  1990年   49篇
  1989年   54篇
  1988年   49篇
  1987年   58篇
  1986年   37篇
  1985年   48篇
  1984年   46篇
  1983年   15篇
  1982年   24篇
  1981年   22篇
  1980年   24篇
  1979年   26篇
  1978年   20篇
  1977年   6篇
  1976年   11篇
  1974年   6篇
排序方式: 共有4385条查询结果,搜索用时 496 毫秒
51.
Streptomyces griseus oxidizes the insecticide precocene II to its cis- and trans-dihydrodiols and 3-chromenol after growth on an enriched medium containing soybean flour. Oxidation of precocene II is dependent on the level of cytochrome P-450 in this organism. Extracts of cells grown on media lacking soybean flour were devoid of cytochrome P-450 and could not oxidize precocene II. In an in vitro reconstituted system containing NADPH, spinach ferredoxin reductase, spinach ferredoxin and ammonium sulfate fractions enriched in cytochrome P-450, precocene II was oxidized to its dihydrodiols. An aerial mycelium-negative variant of S. griseus (AMY mutant), that was unable to elicit cytochrome P-450 when grown on soybean flour-enriched medium, failed to oxidize precocene II.  相似文献   
52.
The greening of the upper part of the outerAllium cepa L. bulb scales, in particular along the vascular regions, is limited to the hypodermal cells in which typical leucoplasts are transformed to normal and functional chloroplasts. This process is light dependent and cannot afterwards be reversed or modified by darkness. The changes in fine structure are described and briefly discussed.Dedicated to Prof. DrLothar Geitler on the occasion of his 90th birthday and 55 years after the publication of his Grundriß der Cytologie.  相似文献   
53.
Using a biolistic device built here and based on the principle of the device described by Klein et al. (1987). we have reproducibly obtained transformants of Chlamydomonas reinhardtii . The reproducibility of the method has allowed us to examine the maintenance and expression of cloned DNA fragments introduced into C. Reinhardtii .  相似文献   
54.
Plant transformation by microinjection techniques   总被引:4,自引:0,他引:4  
Several techniques have been developed for introducing cloned genes into plant cells. Vectorless delivery systems such as PEG-mediated direct DNA uptake (e.g. Pasz-kowski et al. 1984), electroporation (e.g. Shillito et al. 1985), and fusion of protoplasts with liposomes (Deshayes et al. 1985) are routinely used in many experiments (see several chapters of this issue). A wide range of plant species, dicotyledonous as well as monocotyledonous, has been transformed by these vectorless DNA transfer systems. However, the availability of an efficient protoplast regeneration system is a prerequisite for the application of these techniques. For cells with intact cell walls and tissue explants the biological delivery system of virulent Agrobacterium species has been routinely used (for review see Fraley et al. 1986). However, the host range of Agrobacterium restricts the plant species, which can be transformed using this vector system. In addition, all these methods depend on selection systems for recovery of transformants. Therefore a selection system has to be established first for plant species to be transformed. The microinjection technique is a direct physical approach, and therefore host-range independent, for introducing substances under microscopical control into defined cells without damaging them. These two facts differentiate this technique from other physical approaches, such as biolistic transformation and macroinjection (see chapters in this issue). In these other techniques, damaging of cells and random manipulation of cells without optical control cannot be avoided so far. In recent years microinjection technology found its application in plant sciences, whereas this technique has earlier been well established for transformation of animal tissue culture cells (Capecchi 1980) and the production of transgenic animals (Brin-ster et al. 1981, Rusconi and Schaffner 1981). Furthermore, different parameters affecting the DNA transfer via microinjection, such as the nature of microinjected DNA, and cell cycle stage, etc, have been investigated extensively in animal cells (Folger et al. 1982, Wong and Capecchi 1985), while analogous experiments on plant cells are still lacking.  相似文献   
55.
The hypervirulent Agrobacterium tumefaciens strain A281 formed frequent tumors (31%) on Picea abies (Norway spruce), an economically important tree species in Swedish forests. Three-month-old seedlings were inoculated and tumors were established that grew hormone-independently in culture. Tumors contained agropine and mannopine/mannopinic acid as determined by acid pH paper electrophoresis. In addition, DNA hybridization studies showed that the DNA from these tumor lines contained sequences homologous to Ti plasmid T-DNA, whereas wild-type spruce seedling DNA did not. These results suggest that Agrobacterium vectors can be used for gene transfer into this important forest species.  相似文献   
56.
We report here an efficient and highly reproducible delivery system, using an improved biolistic transformation device, that facilitates transient expression of -glucuronidase (GUS) in chloroplasts of cultured tobacco suspension cells. Cultured tobacco cells collected on filter papers were bombarded with tungsten particles coated with pUC118 or pBI101.3 (negative controls), pBI505 (positive nuclear control) or a chloroplast expression vector (pHD203-GUS), and were assayed for GUS activity. No GUS activity was detected in cells bombarded with pUC118 or pBI101.3. Cells bombarded with pBI505 showed high levels of expression with blue color being distributed evenly throughout the whole cytosol of the transformants. pHD203-GUS was expressed exclusively in chloroplasts. We base this conclusion on: i) the procaryotic nature of the promoter used in the chloroplast expression vector; ii) delayed GUS staining; iii) localization of blue color within subcellular compartments corresponding to plastids in both shape and size; and iv) confirmation of organelle-specific expression of pHD203-GUS using PEG-mediated protoplast transformation. Chloroplast transformation efficiencies increased dramatically (about 200-fold) using an improved helium-driven biolistic device, as compared to the more commonly used gun powder charge-driven device. Using GUS as a reporter gene and the improved biolistic device, optimal bombardment conditions were established, consistently producing several hundred transient chloroplast transformants per Petri plate. Chloroplast transformation efficiency was found to be increased further (20-fold) with supplemental osmoticum (0.55 M sorbitol and 0.55 M mannitol) in the bombardment and incubation medium. This system provides a highly effective mechanism for introducing and expressing plasmid DNA within higher-plant chloroplasts, and the fact that GUS functions as an effective marker gene now makes many genetic studies possible which were not possible before.  相似文献   
57.
A wound-inducible proteinase Inhibitor I gene from tomato containing 725 bp of the 5 region and 2.5 kbp of the 3 region was stably incorporated into the genome of black nightshade plants (Solanum nigrum) using an Agrobacterium Ti plasmid-derived vector. Transgenic nightshade plants were selected that expressed the tomato Inhibitor I protein in leaf tissue. The leaves of the plants contained constitutive levels of the inhibitor protein of up to 60 g/g tissue. These levels increased by a factor of about two in response to severe wounding. Only leaves and petioles exhibited the presence of the inhibitor, indicating that the gene exhibited the same tissue specificity of expression found in situ in wounded tomato leaves. Inhibitor I was extracted from leaves of wounded transformed nightshade plants and was partially purified by affinity chromatography on a chymotrypsin-Sepharose column. The affinity-purified protein was identical to the native tomato Inhibitor I in its immunological reactivity and in its inhibitory activity against chymotrypsin. The protein exhibited the same M r of 8 kDa as the native tomato Inhibitor I and its N-terminal amino acid sequence was identical to that of the native tomato inhibitor I, indicating that the protein was properly processed in nightshade plants. These expriments are the first report of the expression of a member of the wound-inducible tomato Inhibitor I gene family in transgenic plants. The results demonstrate that the gene contains elements that can be regulated in a wound-inducible, tissuespecific manner in nightshade plants.  相似文献   
58.
A region (NS1) that acts like an enhancer is located approximately 300 bp upstream of the larval cap site in theAdh gene ofD. melanogaster. When this sequence is deleted (NS1), the gene fails to express ADH protein. Gene expression can be restored by placing a secondAdh gene with an intact enhancer elsewhere on the same plasmid. In these circumstances, both genes are expressed equally regardless of their orientation on the plasmid. In this report we further characterize the interactions that occur when a single enhancer activates expression from a proximal and distant promoter. We have made the following observations: (1) While the two genes are expressed equivalently, their expression relative to a plasmid carrying two intact genes is reduced by a factor of 2 to 6 depending on the orientation of the two genes. (2) The single enhancer drives expression of both genes on any given plasmid molecule. (3) The enhancer does not interact with theAdh gene from which the NS7 region (which spans the larval TATA box) is removed. (4) Expression of the NS1 gene can be restored by an intact gene when both are inserted together into theDrosophila genome via P element-mediated transformation. (5) Increasing the separation between the two genes on a plasmid by up to 15 kbp does not prevent the restoration of expression of the NS1 gene. We propose a model that explains how a single enhancer can stimulate equal expression from two genes.  相似文献   
59.
A versatile shuttle system has been developed for genetic complementation with cloned genes of transformable and non-transformableNeisseria mutants. By random insertion of a selectable marker into the conjugativeNeisseria plasmidptetM25.2, a site within this plasmid was identified that is compatible with plasmid replication and with conjugative transfer of plasmid. Regions flanking the permissive insertion site of ptetM25.2 were cloned inEscherichia coli and served as a basis for the construction of the Hermes vectors. Hermes vectors are composed of anE. coli replicon that does not support autonomous replication inNeisseria, e.g. ColE1, p15A, orori fd, fused with a shuttle consisting of a selectable marker and a multiple cloning site flanked by the integration region of ptetM25.2. Complementation of a non-transformableNeisseria strain involves a three-step process: (i) insertion of the desired gene into a Hermes vector; (ii) transformation of Hermes into aNeisseria strain containing ptetM25.2 to create a hybrid ptetM25.2 via gene replacement by the Hermes shuttle cassette; and (iii) conjugative transfer of the hybrid ptetM25.2 into the finalNeisseria recipient. Several applications for the genetic manipulation of pathogenicNeisseriae are described.  相似文献   
60.
We have developed a reproducible biolistic procedure for the efficient transformation of embryogenic suspension cells of an improved aromatic Indica rice variety, Pusa Basmati 1. The -glucuronidase gene was used to assay transient transformation; other plasmids carrying either a potato protease inhibitor 2 (Pin2) gene, or a late embryogenesis-abundant protein (LEA3) gene from barley, were used for the optimization of biolistic process and transgenic plant production. After optimization of the procedure, over 600 transient transformants and at least five fertile plants showing integrative transformation were obtained per bombarded filter. At least 30% of the plants were derived from independent transformation events. The new improved procedure involves the use of a reporter gene or other useful genes driven by the strong rice actin 1 gene (Act1) promoter, osmotic pre-conditioning of cells for 24 h on medium supplemented with 0.25 M mannitol prior to bombardment, use of gold particles for DNA delivery, and use of plant regeneration medium with high (1.0%) agarose concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号