首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  国内免费   3篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2003年   4篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有34条查询结果,搜索用时 281 毫秒
11.
12.
A survey of papaya and 10 cucurbitaceous vegetables (ashgourd, zucchini, watermelon, cucumber, pumpkin, bottlegourd, snakegourd, spongegourd, bittergourd and choyote) during 1989 and from 1992 to 1994 in more than 68 locations (both experimental plots and farmers' fields) covering 18 terai and inner-terai districts of Nepal, indicated that these crops were heavily affected with various virus-like symptoms. The most commonly observed symptoms were severe mosaic, leaf distortion, oily streaks or spots on papaya; leaf distortion, blisters and shoe stringing on zucchini; and mosaic or yellow mosaic, blisters, and leaf distortion on other cucurbits. Average incidence of plants with symptoms ranged from 75% to 100% on papaya; 85% to 100% on zucchini; 4% to 100% on cucumber; 4% to 100% on pumpkin and 10–100% on bottlegourd, choyote and watermelon. The virus isolated from papaya and zucchini was confirmed as papaya ringspot potyvirus — watermelon strain (PRSV-W). It was also detected in survey samples from ashgourd, bittergourd, snakegourd, spongegourd, zucchini, watermelon, bottlegourd and cucumber. Leaf extracts of some cucumber, choyote, pumpkin, zucchini and snakegourd samples reacted with cucumber mosaic cucumovirus (CMV) and zucchini yellow mosaic potyvirus (ZYMV) antisera. Leaf extracts of ashgourd, cucumber and pumpkin reacted with antibodies against cucurbit aphid-borne yellow luteovirus (CABW). No samples reacted with antiserum to watermelon mosaic-2 potyvirus (WMV-2) or squash mosaic potyvirus (SqMV). Some papaya and most cucurbits leaf samples cross-reacted with antibodies against Moroccan (Mor) and Algerian (Alg) isolates of WMV. The Nepalese PRSV isolate was related to but distinct from a PRSV-W type strain from France. This is the first report on the identity of ZYMV and CABW in Nepal.  相似文献   
13.
‘True French’ is an open‐pollinated cultivar of the Zucchini (Courgette) Group of Cucurbita pepo and is susceptible to Zucchini yellow mosaic virus (ZYMV). Using C. moschata‘Menina’ as the source of ZYMV resistance and following six generations of backcrossing, a true‐breeding line nearly isogenic to ‘True French’, designated 381e, was recovered that carried ZYMV resistance, albeit not at as high a level as in ‘Menina’. ‘True French’ and accession 381e were crossed, and their reciprocal F1, F2, and backcross progenies were grown in a chamber and inoculated with a highly virulent, non‐aphid‐transmissible strain of ZYMV. Nearly all F1 plants and all plants of the backcross to 381e were classified as resistant. Segregation to resistant and susceptible individuals occurred in the backcross to the susceptible parent, in accordance with a 3:5 three‐gene ratio of resistant: susceptible. The F2 segregated in accordance with a ratio of 45 resistant : 19 susceptible, which would be obtained if there was one major gene for resistance, Zym‐1 (Zym), and two other genes, herein designated Zym‐2 and Zym‐3, both of which for complementary to Zym‐1. The presence of Zym‐1 and either Zym‐2 or Zym‐3 is necessary for resistance to be expressed in young plants, but the presence of all three might be necessary for resistance to continue to be expressed during subsequent development of the plants. Evidently, Zym‐2 and Zym‐3 are ubiquitous in C. moschata but their susceptible alleles are much more common in C. pepo. As the level of resistance of 381e to ZYMV is not as high as that of C. moschata‘Menina’, additional, as yet unidentified, genes must be involved in conferring high resistance to this virus.  相似文献   
14.
Nineteen aphid species were tested for their ability to transmit Zucchini yellow mosaic virus (ZYMV) from and to zucchini under laboratory conditions. Sixteen species were found to be new vectors of ZYMV (i.e. Aphis craccae, Aphis fabae, Aphis nerii, Aulacorthum solani, Brachycaudus cardui, Brevicoryne brassicae, Hyalopterus pruni complex, Hyperomyzus lactucae, Macrosiphoniella sanborni, Macrosiphum rosae, Metopolophium dirhodum, Myzus cerasi, Rhopalosiphum maidis, R. padi, Semiaphis dauci and Sipha maydis). Their transmission efficiency by a single aphid was low (0.1–4.2%). Myzus persicae was used as a control and was the most efficient vector (41.1%, one aphid per plant). Hayhurstia atriplicis, Myzus ascalonicus and Sitobion avenae did not transmit the virus. In four out of six new vectors assayed in arena tests for propensity estimation, propensity was higher than efficiency. Data from an experimental zucchini field in northern Greece revealed a high correlation between ZYMV spread and alatae of the vector species. The most abundant aphid vectors during 2 years experimentation were M. persicae, Aphis gossypii and Aphis spiraecola. The possible role of the 16 new and the previously known aphid vectors in the epidemiology of ZYMV was investigated using data of transmission efficiency combined with the captures of their alatae in the Greek net of a Rothamsted type suction trap.  相似文献   
15.
16.

Im Fernen Osten Russlands werden die dort vorherrschenden Gemüsekulturen Tomate, Paprika, Eierpflanze, Zucchini, Gurke, Weiß - und Blumenkohl sowie Radies und Loba - Rettich von einer Reihe von Viruskrankheiten befallen, die ernsthafte Verluste verursachen können. Folgende Viren wurden isoliert: aus Paprika Normal-und Nekrosestämme des Tobacco mosaic virus , (TMV), aus Tomate und Eierpflanze - Stämme des Tomato mosaic virus (ToMV), aus Zucchini - das Watermelon mosaic virus (WMV), aus Paprika, Tomate, Gurke und Eierpflanze - das Cucumis mosaic virus (CMV), aus Paprika das Tobacco etch virus (TEV) und aus der Schalotte - das Onion yellow dwarf virus (OYDV). Auf Gemüsearten aus der Familie der Brassicaceae wurden das Turnip mosaic virus (TuMV), das Radish mosaic virus (RaMV) und das Cauliflower mosaic virus (CaMV) identifiziert.  相似文献   
17.
Pathogens can alter host phenotypes in ways that influence interactions between hosts and other organisms, including insect disease vectors. Such effects have implications for pathogen transmission, as well as host exposure to secondary pathogens, but are not well studied in natural systems, particularly for plant pathogens. Here, we report that the beetle‐transmitted bacterial pathogen Erwinia tracheiphila – which causes a fatal wilt disease – alters the foliar and floral volatile emissions of its host (wild gourd, Cucurbita pepo ssp. texana) in ways that enhance both vector recruitment to infected plants and subsequent dispersal to healthy plants. Moreover, infection by Zucchini yellow mosaic virus (ZYMV), which also occurs at our study sites, reduces floral volatile emissions in a manner that discourages beetle recruitment and therefore likely reduces the exposure of virus‐infected plants to the lethal bacterial pathogen – a finding consistent with our previous observation of dramatically reduced wilt disease incidence in ZYMV‐infected plants.  相似文献   
18.
西葫芦根腐病菌拮抗细菌的防病促生作用   总被引:1,自引:0,他引:1  
【目的】获取促生的同时可抑制尖孢镰刀菌(Fusarium oxysporum)的拮抗菌并明确其防治效果。【方法】平板对峙生长法测定前期分离的19株促生菌对尖孢镰刀菌的抑制作用,温室条件下接种微生物菌剂对西葫芦根腐病的防治作用;田间条件下接种复合菌剂代替部分化肥对西葫芦生长的影响。【结果】可有效拮抗尖孢镰刀菌的菌株有9株,其中,菌株FX2的抑菌活性较好,抑制率达到66.80%。在温室盆栽中,接种微生物菌剂(LHS11+FX2)对西葫芦根腐病抑制率达到57.14%。在田间试验中,微生物菌剂配施化肥对西葫芦的生物量和根系形态影响显著,以85%化肥+复合菌剂处理效果较优,其对西葫芦成熟期的产量显著提高27.13%。【结论】复合菌剂(LHS11+FX2)对西葫芦根腐病具有较好的防治作用;85%化肥+复合菌剂对西葫芦的促生作用明显,在一定程度上节约了化肥投入成本,提高了增产效益。  相似文献   
19.
A series of small and large pot trials were conducted to assess the phytoextraction potential of several plant species for weathered polychlorinated biphenyls (PCBs) in soil (105 microg/g Arochlor 1268). In addition, the effect of citric acid on PCB bioavailability to both plants and earthworms was assessed. Under small pot conditions (one plant, 400 g soil), three cucurbits (Cucurbita pepo ssp pepo [zucchini] and ssp ovifera [nonzucchini summer squash], Cucumis sativus, cucumber) accumulated up to 270 microg PCB/g in the roots and 14 microg/g in the stems, resulting in 0.10% contaminant removal from soil. Periodic 1 mM subsurface amendments of citric acid increased the stem and leaf PCB concentration by 330 and 600%, respectively, and resulted in up to a 65% increase in the total amount of contaminant removed from soil. Although citric acid at 10 mM more than doubled the amount of PCB desorbed in abiotic batch slurries, contaminant accumulation by two earthworm species (Eisenia foetida and Lumbricus terrestris) was unaffected by citric acid at 1 and 10 mM and ranged from 11-15 microg/g. Two large pot trials were conducted in which cucurbits (C. pepo ssp pepo and ssp ovifera, C. sativus) and white lupin (Lupinus albus) were grown in 70 kg of PCB-contaminated soil White lupin was the poorest accumulator of PCBs, with approximately 20 microg/g in the roots and 1 microg/g in the stems. Both C. pepo ssp ovifera (summer squash) and C. sativus (cucumber) accumulated approximately 65-100 microg/g in the roots and 6-10 microg/g in the stems. C. pepo ssp pepo (zucchini) accumulated significantly greater levels of PCB than all other species, with 430 microg/g in the roots and 22 microg/g in the stems. The mechanism by which C. pepo spp pepo extracts and translocates weathered PCBs is unknown, but confirms earlier findings on the phytoextraction of other weathered persistent organic pollutants such as chlordane, p,p'-DDE, and polycyclic aromatic hydrocarbons.  相似文献   
20.
《Ostrich》2013,84(3):231-241
Inferred hybrid Chorister Robin-Chat Cossypha dichroa and Red-capped Robin-Chat C. natalensis have previously only been recorded from the Eastern Cape province, South Africa. We extend the occurrence of inferred hybrids with ringed and photographed examples from KwaZulu-Natal and Limpopo provinces. Sympatry at a fine scale was investigated at Vernon Crookes Nature Reserve, KwaZulu-Natal, using observational data over 30 years (1978–2008) and intensive mist-netting during two field-trips in June and October 2010. Both robin-chat species were found throughout the year and occurred in the same forest patches. Inferred hybrids are known from five different forest patches in Vernon Crookes, three with photographic evidence. During winter an increase in Chorister Robin-Chat numbers was detectable both from mist-netting and checklist data. An increase of Red-capped Robin-Chats was observed from mist-netting and more equivocally from checklist data in spring. Red-capped and Chorister Robin-Chats are sympatric along the eastern escarpment of South Africa, with co-occurrence in 96 quarter degree squares from Southern African Bird Atlas Project 1 data. During the breeding season, co-occurrence was recorded in 62 quarter degree squares and in nine grid-cells evidence of breeding by both species is available. Hybridisation may be more common along the extensive area of sympatry than currently realised.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号