首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8812篇
  免费   563篇
  国内免费   578篇
  2024年   21篇
  2023年   165篇
  2022年   139篇
  2021年   243篇
  2020年   249篇
  2019年   322篇
  2018年   234篇
  2017年   240篇
  2016年   251篇
  2015年   310篇
  2014年   362篇
  2013年   500篇
  2012年   285篇
  2011年   344篇
  2010年   261篇
  2009年   426篇
  2008年   471篇
  2007年   483篇
  2006年   441篇
  2005年   398篇
  2004年   338篇
  2003年   371篇
  2002年   280篇
  2001年   229篇
  2000年   217篇
  1999年   188篇
  1998年   203篇
  1997年   212篇
  1996年   154篇
  1995年   151篇
  1994年   136篇
  1993年   170篇
  1992年   156篇
  1991年   112篇
  1990年   115篇
  1989年   90篇
  1988年   98篇
  1987年   84篇
  1986年   79篇
  1985年   92篇
  1984年   62篇
  1983年   41篇
  1982年   64篇
  1981年   45篇
  1980年   44篇
  1979年   32篇
  1978年   10篇
  1977年   11篇
  1976年   7篇
  1972年   6篇
排序方式: 共有9953条查询结果,搜索用时 78 毫秒
121.
Bean ( Phaseolus vulgaris L.) seedlings were cultured on complete or phosphate-deficient nutrient medium. After 14 days of culture on phosphate-deficient medium the visible symptoms of Pi deficiency were observed only in the shoot, the fresh and dry weights of the roots were slightly higher than in control plants. The decreased Pi content in the roots had little effect on total respiration rate but had an effect on the level of inhibition of respiration by cyanide. The high resistance of respiration to cyanide observed in Pi-deficient roots was the result of the suppression of cytochrome path activity and an increased participation of the alternative, cyanide-resistant pathway. The cytochrome pathway activity increased when inorganic phosphate was supplied to Pi-deficient roots for 1 or 3.5 h. It is speculated that the suppression of cytochrome pathway in Pi-deficient roots may result from restriction of the phosphorylating capacity or a partial inhibition of cytochrome oxidase activity.  相似文献   
122.
The effect of Si(OH)4 on Cr toxicity and elemental concentrations in ryegrass were investigated in a growth chamber using an acid and a neutral mineral soil. Each soil was treated with 50 mg Cr, as CrO3, kg−1 soil dry weight, singly, or in combination with 25 mg Si as Si(OH)4. Plants growing in unamended soils were used as controls. Chromium toxicity, expressed as decrease in shoot or root dry weight, was increased by the Si. This increase was accompanied by a higher Cr uptake particularly on the acid soil. The shoot and root dry weights were significantly correlated (P=1%) with the concentration of Cr, where r=−0.80 and −0.65, respectively. Uptake of Al, Cu, Fe, P and Zn did not show any consistent relationship to the magnitude of Cr toxicity.  相似文献   
123.
The effect of aluminium (Al) on root elongation was studied in solution culture and sand culture. Compared to solution culture, in sand culture a ten times higher Al supply was necessary to inhibit root elongation to a comparable degree. This was due to a much lower Al uptake into the 5 mm root tips in sand culture. Fe concentrations in root tips were also lower in sand culture. Ca concentrations were higher and less depressed by Al, whereas Mg and K concentrations were not affected by the culture substrate. Regressions of Al concentrations in root tips versus inhibition of root elongation by Al revealed root damage at lower Al concentrations in sand culture. The effect of culture substrate on Al tolerance was independent of N source and could also be shown in flowing solution culture with and without sand. The results indicate that mechanical impedance in sand culture decreased Al uptake. This may be due to enhanced exudation of organic complexors thus reducing activites of monomeric Al species.  相似文献   
124.
The long arm of chromosome 4D of wheat (Triticum aestivum L.) contains a gene (or genes) which influences the ability of wheat plants to discriminate between Na+ and K+. This discrimination most obviously affects transport from the roots to the shoots, in which less Na+ and more K+ accumulate in those plants which contain the long arm of chromosome 4D. Concentrations of Na+ and K+ in the roots, and Cl concentrations in the roots and shoots, are not significantly affected by this trait, but Na+, K+ and Cl contents of the grain are reduced. The trait operates over a wide range of salinities and appears to be constitutive. At the moment it is not possible to determine accurately the effect of this trait on growth or grain yield because the aneuploid lines which are available are much less vigorous and less fertile than their euploid parents.  相似文献   
125.
Summary Abscisic acid (ABA) has been implicated as a regulatory factor in plant cold acclimation. In the present work, the cold-acclimation properties of an ABA-deficient mutant (aba) of Arabidopsis thaliana (L.) Heynh. were analyzed. The mutant had apparently lost its capability to cold acclimate: the freezing tolerance of the mutant was not increased by low temperature treatment but stayed at the level of the nonacclimated wild type. The mutational defect could be complemented by the addition of exogenous ABA to the growth medium, restoring freezing tolerance close to the wild-type level. This suggests that ABA might have a central regulatory function in the development of freezing tolerance in plants. Cold acclimation has been previously correlated to the induction of a specific set of proteins that have been suggested to have a role in freezing tolerance. However, these proteins were also induced in the aba mutant by low temperature treatment.  相似文献   
126.
Abstract Advanced selections (families 20010 and 20062) of P. radiata D. Don were exposed to either 340 or 660 μmol CO2 mol 1 for 2 years to establish if growth responses to high CO2 would persist during the development of woody tissues. The experiment was carried out in glasshouses and some of the trees at each CO2 concentration were subjected to phosphorus deficiency and to periodic drought. CO2 enrichment increased whole-plant dry matter production irrespective of water availability, but only when phosphorus supply was adequate. The greatest increase occurred during the exponential period of growth and appeared to be tied to increased rates of photosynthesis, which caused accelerated production of leaf area. The increase in whole-plant dry matter production was similar for both families; however, family 20010 partitioned larger amounts of dry weight to the trunks than family 20062. which favoured the roots and branches. Wood density was generally increased by elevated CO2 and for family 20010 this increase was due to thickening of the tracheid walls. Tracheid length was similar at both CO2 levels but differed between families. These results suggest that, as the atmospheric CO2 concentration rises, field-grown P. radiata should produce more dry weight at sites where phosphorus is not acutely deficient, even where drought limits growth; however, increases in wood production are likely only for genotypes which continue to partition at least the same proportion of dry weight to wood in the trunk.  相似文献   
127.
Abstract. Kosteletzkya virginica (L.) Presl., a dicotyledonous halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m-3 NaCl, and the effects of external salinity on shoot growth and ion content of individual leaves were studied in successive harvests. Growth was stimulated by 85 mol m-3 NaCl and was progressively reduced at the two higher salinities. Growth suppression at high salinity resulted principally from decreased leaf production and area, not from accelerated leaf death. As is characteristic of halophytic dicots. K. virginica accumulated inorganic ions in its leaves, particularly Na+ and K+. However, the Na+ concentration of individual leaves did not increase with time, but remained constant or even declined, seeming to be well-coordinated with changes in water content. A striking feature of the ion composition of salinized plants was the development of a dramatic gradient in sodium content, with Na+ partitioned away from the most actively growing leaves. Salt-treated plants exhibited a strong potassium affinity, with foliar K+ levels higher in salinized plants than unsalinized plants after an initial decrease. These results suggest that selective uptake and transport, foliar compartmentation of Na+ and K+ in opposite directions along the shoot axis, and the regulation of leaf salt loads over time to prevent build-up of toxic concentrations are whole-plant features which enable K. virginica to establish favourable K+-Na+ relations under saline conditions.  相似文献   
128.
Abstract. Kosteletzkya virginica (L.) Presl., a dicot halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m 3 NaCl, and the effects of external salinity on root growth, ion and water levels, and lipid content were examined in successive harvests. Root growth paralleled shoot growth trends, with some enhancement observed at 85 mol m 3 NaCl and a reduction noted at the higher salinities. Root Na+ content increased with increasing external NaCl, but remained constant with time for each treatment. K+ content, although lower in salt-grown plants after 14 d salinization, subsequently increased to levels comparable to unsalinized plants. A strong K+ affinity was reflected in the increased K+/Na+ selectivity of salt-grown plants and by their low Na+/K+ ratios. Cl levels rose in salinized plants and values were double or more those for Na+, indicating the possibility of a sodium-excluding mechanism in roots. Root phospholipids and sterols, principal membrane constituents, were maintained or elevated and the free sterol/phospholipids ratio increased in salinized K. virginica plants, suggesting retention of overall membrane structure and decreased permeability. This response, considered in light of root calcium maintenance and high potassium levels, suggests that salinity-induced changes in membrane lipid composition may be important in preventing K+ leakage from cells.  相似文献   
129.
Iron-dependent formation of ferredoxin and flavodoxin was determined in Anabaena ATCC 29413 and ATCC 29211 by a FPLC procedure. In the first species ferredoxin is replaced by flavodoxin at low iron levels in the vegetative cells only. In the heterocysts from Anabaena ATCC 29151, however, flavodoxin is constitutively formed regardless of the iron supply.Replacement of ferredoxin by flavodoxin had no effect on photosynthetic electron transport, whereas nitrogen fixation was decreased under low iron conditions. As ferredoxin and flavodoxin exhibited the same Km values as electron donors to nitrogenase, an iron-limited synthesis of active nitrogenase was assumed as the reason for inhibited nitrogen fixation. Anabaena ATCC 29211 generally lacks the potential to synthesize flavodoxin. Under iron-starvation conditions, ferredoxin synthesis is limited, with a negative effect on photosynthetic oxygen evolution.  相似文献   
130.
Summary Anoxia tolerance, glycogen degradation, free amino acid pool, adenylate energy charge and the accumulation and excretion of end products were monitored inLumbriculus variegatus Müller throughout 48 h of anoxia. A transition period lasting about 4 h could be distinguished from subsequent events during which malate, present in high amounts in the resting animals, is utilized, probably by conversion to succinate. Up to the 12th hour of anoxia there is an increase in concentration of free amino acids, except aspartate. Glutamate increases rapidly during the first half hour but decreases thereafter. Beginning with the second hour of anoxia the alanine concentration increases at the same rate glutamate concentration decreases, but the source of nitrogen during the first hour is unknown. It is argued that the nitrogen required for the synthesis of some of the amino acids is ultimately derived from proteolysis. After about 3 h of anoxia propionate and acetate are synthesized. At first these acids accumulate in the tissues, but after 4–6 h they are excreted into the surrounding medium. Acetate is excreted over the whole experimental period at a constant rate, whereas the excretion rate of propionate decreases slowly with time. The propionate/acetate ratio is in excess of 2. Classic malate dismutation is by far the most important mechanism in the maintenance of redox balance. Depletion of glycogen stores appears to play an important role in determining anoxic survival time. Due to extremely low activity of PEPCK the ratio of the specific activities of PK and PEPCK is very high. Further, the kinetic properties of pyruvate kinase do not support the assumption of a shift of the glycolytic carbon flow at the PEP level.Abbreviations PK Pyruvate kinase - PEPCK phosphoenolpyruvate carboxykinase - PEP phospho(enol)pyruvate - FBP fructose-1,6-bisphosphate - AEC adenylate energy charge - EMP-scheme Embden-Meyerhof-Parnas scheme of glycolysis - f w fresh body weight - dw dry body weight  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号