首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1719篇
  免费   28篇
  国内免费   42篇
  1789篇
  2024年   1篇
  2023年   33篇
  2022年   17篇
  2021年   38篇
  2020年   40篇
  2019年   18篇
  2018年   14篇
  2017年   18篇
  2016年   21篇
  2015年   46篇
  2014年   81篇
  2013年   65篇
  2012年   53篇
  2011年   149篇
  2010年   76篇
  2009年   130篇
  2008年   114篇
  2007年   118篇
  2006年   105篇
  2005年   82篇
  2004年   64篇
  2003年   68篇
  2002年   25篇
  2001年   30篇
  2000年   31篇
  1999年   28篇
  1998年   26篇
  1997年   30篇
  1996年   27篇
  1995年   25篇
  1994年   21篇
  1993年   19篇
  1992年   18篇
  1991年   12篇
  1990年   11篇
  1989年   10篇
  1988年   8篇
  1987年   14篇
  1986年   11篇
  1985年   17篇
  1984年   10篇
  1983年   9篇
  1982年   21篇
  1981年   11篇
  1980年   10篇
  1979年   9篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
  1969年   2篇
排序方式: 共有1789条查询结果,搜索用时 15 毫秒
31.
Gallbladder carcinoma (GBC) is one of the mostly aggressive and fatal malignancies. However, little is known about the oncogenic genes that contributed to the development of GBC. Zinc finger X-chromosomal protein (ZFX) was a novel member of the Krueppel C2H2-type zinc-finger protein family and its down-regulation led to impaired cell growth in human laryngeal squamous cell carcinoma. Here, we aim to investigate the function of ZFX in GBC cell proliferation and migration. Loss of function analysis was performed on GBC cell line (GBC-SD) using lentivirus-mediated siRNA against ZFX. The proliferation, in vitro tumorigenesis (colony-formation) ability as well as cell migration was significantly suppressed after GBC-SD cells which were infected with ZFX-siRNA-expressing lentivirus (Lv-shZFX). Our finding suggested that ZFX promoted the growth and migration of GBC cells and could present a potential molecular target for gene therapy of GBC.  相似文献   
32.
The transient receptor potential melastatin 5 (TRPM5) channel is a monovalent cation channel activated by intracellular Ca2+. Expression of this channel is restricted to taste cells, the pancreas and brainstem, and is thought to be involved in controlling membrane potentials. Its endogenous ligands are not well characterized. Here, we show that extracellular application of Zn2+ inhibits TRPM5 activity. In whole-cell patch-clamp recordings, extracellular application of ZnCl2 inhibited step-pulse-induced TRPM5 currents with 500 nm free intracellular Ca2+ in a dose-dependent manner (IC50 = 4.3 μm at −80 mV). ZnSO4 also inhibited TRPM5 activity. Extracellular application of ZnCl2 inhibited TRPM5 activation at several temperatures. Furthermore, inhibition by 30 μm ZnCl2 was impaired in TRPM5 mutants in which His at 896, and Glu at 926 and/or Glu at 939 in the outer pore loop were replaced with Gln. From these results, we conclude that extracellular Zn2+ inhibits TRPM5 channels, and the residues in the outer pore loop of TRPM5 are critically involved in the inhibition.  相似文献   
33.
A novel ferritin was recently found in Pseudo-nitzschia multiseries (PmFTN), a marine pennate diatom that plays a major role in global primary production and carbon sequestration into the deep ocean. Crystals of recombinant PmFTN were soaked in iron and zinc solutions, and the structures were solved to 1.65–2.2-Å resolution. Three distinct iron binding sites were identified as determined from anomalous dispersion data from aerobically grown ferrous soaked crystals. Sites A and B comprise the conserved ferroxidase active site, and site C forms a pathway leading toward the central cavity where iron storage occurs. In contrast, crystal structures derived from anaerobically grown and ferrous soaked crystals revealed only one ferrous iron in the active site occupying site A. In the presence of dioxygen, zinc is observed bound to all three sites. Iron oxidation experiments using stopped-flow absorbance spectroscopy revealed an extremely rapid phase corresponding to Fe(II) oxidation at the ferroxidase site, which is saturated after adding 48 ferrous iron to apo-PmFTN (two ferrous iron per subunit), and a much slower phase due to iron core formation. These results suggest an ordered stepwise binding of ferrous iron and dioxygen to the ferroxidase site in preparation for catalysis and a partial mobilization of iron from the site following oxidation.  相似文献   
34.
35.
Oral cancer is a major cause of cancer morbidity and mortality worldwide and is prevalent in most areas where tobacco related practices are observed. Essential elements play a role in many biochemical reactions as a micro-source and there is growing evidence that their concentrations are altered on the onset and progress of malignant disease. In this study the levels of copper (Cu), zinc (Zn), selenium (Se) and molybdenum (Mo) in serum of patients with oral sub mucous fibrosis (OSMF) (n = 30) and oral squamous cell carcinoma (OSCC) (n = 30); were determined and the alterations of these critical parameters were analyzed in comparison with controls (n = 30) to identify predictors amongst these parameters for disease occurrence and progression. The serum Cu and Zn were established using Flame Atomic Absorption Spectrometry. Serum estimation of Se and Mo was done by graphite furnace atomic absorption spectrometry (GFAAS). Data analysis revealed a marked, progressive and significant increase in Cu levels in precancer (OSMF) and cancer (OSCC) groups as compared to the normal group. The level of Zn in serum was slightly elevated in OSMF and OSCC though not statistically significant. Cu/Zn ratio was slightly but not significantly elevated. Serum levels of Se and Mo were significantly decreased in the precancer and cancer groups as compared to the normals.  相似文献   
36.
37.
Madurella mycetomatis is the main cause of mycetoma, a chronic, granulomatous skin infection of the subcutaneous tissue. One of the main virulence factors is the formation of grains, which are difficult to treat with the currently available antifungal drugs. Studies have indicated that zinc homeostasis could be an important factor for grain formation. Therefore, in this review the mechanisms behind zinc homeostasis in other fungal species were summarized and an in silico analysis was performed to identify the components of zinc homeostasis in M. mycetomatis. Orthologues for many of the zinc homeostasis components found in other fungal species could also be identified in M. mycetomatis, including those components that have been identified to play a role in biofilm formation, a process which has some parallels with grain formation. Zinc homeostasis may well play an important role in the process of grain formation and, therefore, more knowledge on this subject in M. mycetomatis is required as it may lead to novel therapies to combat this debilitating disease.  相似文献   
38.
Though initially identified as necessary for neural migration, Disconnected and its partially redundant paralog, Disco-related, are required for proper head segment identity during Drosophila embryogenesis. Here, we present evidence that these genes are also required for proper ventral appendage development during development of the adult fly, where they specify medial to distal appendage development. Cells lacking the disco genes cannot contribute to the medial and distal portions of ventral appendages. Further, ectopic disco transforms dorsal appendages toward ventral fates; in wing discs, the medial and distal leg development pathways are activated. Interestingly, this appendage role is conserved in the red flour beetle, Tribolium (where legs develop during embryogenesis), yet in the beetle we found no evidence for a head segmentation role. The lack of an embryonic head specification role in Tribolium could be interpreted as a loss of the head segmentation function in Tribolium or gain of this function during evolution of flies. However, we suggest an alternative explanation. We propose that the disco genes always function as appendage factors, but their appendage nature is masked during Drosophila embryogenesis due to the reduction of limb fields in the maggot style Drosophila larva.  相似文献   
39.
The 131 residues protein encoded by the open reading frame ygiT of E. coli contains two characteristic domains: a zinc finger protein-like structure with two CxxC motives at its N-terminus and a helix-turn-helix (HTH) motif at its C-terminus. We report the backbone and side chain 1H, 13C, and 15N resonances assignment of YgiT.  相似文献   
40.
Because zinc (Zn) is an important component for cell protection against certain oxygen species, it has been suggested that Zn deficiency impairs the potent oxidant defense capacity, which is constitutively provided in the vascular system. However, the influence of dietary Zn deficiency on systemic blood pressure and vascular system is controversial and unclear. We therefore examine the effect of dietary Zn deficiency on systemic blood pressure, a potent superoxide scavenger, aortic Cu/Zn superoxide dismutase (SOD) activity, a most representative synthase of the endothelium-derived relaxing factor, and aortic endothelial nitric oxide synthase (eNOS) expression. Furthermore, the direct effects of intravenous administration of NOS inhibitor, N ω-nitro-l-arginine methyl ester (l-NAME), and a SOD mimetic compound, tempol, in normotensives were tested in Wistar-Kyoto (WKY) rats. A Zn-deficient diet (4 wk) contributed to growth retardation, the decrease in thymus weight, and the lower levels of serum Zn compared with the standard diet group. However, no significant difference in conscious systolic and diastolic blood pressure was found in the Zn-deficiency group. The administration of l-NAME caused an increase in the mean arterial pressure (MAP) levels in the two groups of rats and the involvement of the vasodilator nitric oxide (NO) in the regulation of systemic BP in the normotensive state. On the other hand, administration of the superoxide scavenger, tempol, led to a decrease in MAP levels in the two groups of rats, indicating the participation of the oxygen free radical, superoxide, in the maintenance of the systemic BP in a normotensive state. There were no significant differences between the Zn-deficient diet group and the standard diet group in the normotensive state. eNOS expression and Cu/Zn SOD activity in the aorta were also intact in Zn-deficient normotensive rats. These findings suggest that the 4 wk of Zn deficiency was inadequate to alter systemic blood pressure and focal NO signaling in the normotensive state. Long-term Zn deficiency affects the neuronal, immune, and hematopoietic systems, which contribute to systemic and/or local circulation. However, Zn deficiency alone does not cause hypertension and local vascular dysfunction in the normotensive state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号