首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2228篇
  免费   28篇
  国内免费   32篇
  2023年   23篇
  2022年   14篇
  2021年   21篇
  2020年   40篇
  2019年   17篇
  2018年   39篇
  2017年   16篇
  2016年   18篇
  2015年   65篇
  2014年   81篇
  2013年   129篇
  2012年   61篇
  2011年   132篇
  2010年   99篇
  2009年   149篇
  2008年   143篇
  2007年   151篇
  2006年   99篇
  2005年   93篇
  2004年   83篇
  2003年   61篇
  2002年   52篇
  2001年   27篇
  2000年   36篇
  1999年   40篇
  1998年   44篇
  1997年   42篇
  1996年   43篇
  1995年   45篇
  1994年   39篇
  1993年   32篇
  1992年   31篇
  1991年   42篇
  1990年   35篇
  1989年   22篇
  1988年   23篇
  1987年   19篇
  1986年   11篇
  1985年   19篇
  1984年   28篇
  1983年   17篇
  1982年   34篇
  1981年   19篇
  1980年   20篇
  1979年   22篇
  1978年   3篇
  1977年   5篇
  1976年   1篇
  1974年   2篇
  1971年   1篇
排序方式: 共有2288条查询结果,搜索用时 437 毫秒
121.
Twenty-seven infants with classical phenylketonuria were evaluated longitudinally for 6 mo while ingesting PhenexTM -1 Amino Acid Modified Medical Food With Iron as their primary protein source. Intake of selected nutrients and biochemical indices of trace and ultratrace mineral status and plasma retinol and α-tocopherol concentrations were evaluated. The means of iron status indices (complete blood count, plasma ferritin, iron, transferrin saturation, total iron binding capacity) and the plasma concentrations of trace and ultratrace minerals (copper, manganese, molybdenum, selenium, zinc) and plasma retinol and α-tocopherol were in the reference ranges. Vitamin A intakes (r = 0.49,p < 0.05) and plasma retinol-binding protein concentrations (r = 0.42,p < 0.05) were positively correlated with plasma retinol concentrations at 3 mo of study. At 6 mo, concentrations of plasma transthyretin (r = 0.72,p < 0.01) and retinolbinding protein (r = 0.48,p < 0.05) were positively correlated with plasma retinol concentrations. At 6 mo, concentrations of plasma transthyretin (r = 0.52,p < 0.05) were positively correlated with retinol-binding protein concentrations. Phenex-1 supports normal mean iron status indices and mean concentrations of trace and ultratrace minerals, retinol, and α-tocopherol when fed in adequate amounts.  相似文献   
122.
Long-term effects of iron: Zinc interactions on growth in rats   总被引:1,自引:0,他引:1  
The influence of iron (Fe) on the bioavailability and functional status of zinc (Zn) was studied in young rats using metabolic balances and tissue dosages, which were compared to growth. Diets supplied adequate intakes of Fe (45 and 300 mg/kg diet) and Zn (14 and 45 mg/kg) for 2 mo. Two metabolic balance determinations were performed that were correlated for Zn and Fe during the first and the last weeks of the study. A significant effect of Fe supply, but not of Zn was displayed on Fe absorption; both Fe and Zn diet concentrations had a significant influence on Zn absorption. Fe and Zn organ contents were significantly correlated with the amount absorbed during the two metabolic balances. There was a positive correlation between liver and muscle Fe and Fe absorption, and Fe absorption and muscle Zn, as well as a negative one with liver Zn; a positive correlation was displayed between Zn absorption and Zn organ content. No correlation was found between Zn absorption and Fe tissue content. Growth was correlated with Zn, but not with Fe absorption during both balances. A positive correlation was displayed between growth and Zn liver content, and a negative one with Fe liver content. Care must be taken to give growing subjects balanced diets or supplementation, since the negative interactions between these trace elements are likely to persist as long as the diet is given.  相似文献   
123.
124.
Iron is a metal required by most microorganisms and is prominently used in the transfer of electrons during metabolism. The gathering of iron is, then, an essential process and its fulfillment becomes a crucial pathogenetic event for zoopathogenic fungi. Iron is rather unavailable because it occurs on the earth's surface in its insoluble ferric form in oxides and hydroxides. In the infected host iron is bound to proteins such as transferrin and ferritin. Solubilization of ferric iron is the major problem confronting microorganisms. This process is achieved by two major mechanisms: ferric reduction and siderophore utilization. Ferric reductase is frequently accompanied by a copper oxidase transport system. There is one example of direct ferric iron transport apparently without prior reduction. Ferric reduction may also be accomplished by low molecular mass compounds. Some fungi have evolved a process of iron acquisition involving the synthesis of iron-gathering compounds called siderophores. Even those fungi that do not synthesize siderophores have developed permeases for transport of such compounds formed by other organisms. Fungi can also reductively release iron from siderophores and transport the ferrous iron often by the copper oxidase transport system. There is a great diversity of iron-gathering mechanisms expressed by pathogenic fungi and such diversity may be found even in a single species.  相似文献   
125.
Growth of Leishmania mexicana amazonensis promastigotes in different culture media resulted in structurally and chemically different acidocalcisomes. When grown in SDM-79 medium, the promastigotes showed large spherical acidocalcisomes of up to 1.2 m diameter distributed throughout the cell. X-ray microanalysis and elemental mapping of the organelles showed large amounts of oxygen, phosphorus, sodium, potassium, magnesium, calcium, and zinc. Immunofluorescence microscopy using antisera raised against a peptide sequence of the vacuolar-type proton pyrophosphatase of Arabidopsis thaliana that is conserved in the Leishmania enzyme, indicated localization in acidocalcisomes. When cells were transferred to Warrens medium, the acidocalcisomes transformed from spherical into branched tubular organelles. The labeling pattern of the vacuolar proton-pyrophosphatase, considered as a marker for the organelle, changed accompanying the structural changes of the acidocalcisomes, and the enzyme showed an apparently lower proton-transporting activity when measured in digitonin-permeabilized promastigotes. X-ray microanalysis and elemental mapping of these structures revealed the additional presence of iron. Together, the results reveal that the morphology and composition of acidocalcisomes are greatly influenced by the culture conditions.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   
126.
The structures of nitrogenase Fe proteins with defined amino acid substitutions in the previously implicated nucleotide-dependent signal transduction pathways termed switch I and switch II have been determined by X-ray diffraction methods. In the Fe protein of nitrogenase the nucleotide-dependent switch regions are responsible for communication between the sites responsible for nucleotide binding and hydrolysis and the [4Fe-4S] cluster of the Fe protein and the docking interface that interacts with the MoFe protein upon macromolecular complex formation. In this study the structural characterization of the Azotobacter vinelandii nitrogenase Fe protein with Asp at position 39 substituted by Asn in MgADP-bound and nucleotide-free states provides an explanation for the experimental observation that the altered Fe proteins form a trapped complex subsequent to a single electron transfer event. The structures reveal that the substitution allows the formation of a hydrogen bond between the switch I Asn39 and the switch II Asp125. In the structure of the native enzyme the analogous interaction between the side chains of Asp39 and Asp125 is precluded due to electrostatic repulsion. These results suggest that the electrostatic repulsion between Asp39 and Asp125 is important for dissociation of the Fe protein:MoFe protein complex during catalysis. In a separate study, the structural characterization of the Fe protein with Asp129 substituted by Glu provides the structural basis for the observation that the Glu129-substituted variant in the absence of bound nucleotides has biochemical properties in common with the native Fe protein with bound MgADP. Interactions of the longer Glu side chain with the phosphate binding loop (P-loop) results in a similar conformation of the switch II region as the conformation that results from the binding of the phosphate of ADP to the P-loop.  相似文献   
127.
Acetyl-CoA synthase (also known as carbon monoxide dehydrogenase) is a bifunctional Ni-Fe-S-containing enzyme that catalyzes the reversible reduction of CO2 to CO and the synthesis of acetyl-coenzyme A from CO, CoA, and a methyl group donated by a corrinoid iron-sulfur protein. The active site for the latter reaction, called the A-cluster, consists of an Fe4S4 cubane bridged to the proximal Ni site (Nip), which is bridged in turn to the so-called distal Ni site. In this review, evidence is presented that Nip achieves a zero-valent state at low potentials and during catalysis. Nip appears to be the metal to which CO and methyl groups bind and then react to form an acetyl-Nip intermediate. Methyl group binding requires reductive activation, where two electrons reduce some site on the A-cluster. The coordination environment of the distal Ni suggests that it could not be stabilized in redox states lower than 2+. The rate at which the [Fe4S4]2+ cubane is reduced is far slower than that at which reductive activation occurs, suggesting that the cubane is not the site of reduction. An intriguing possibility is that Nip2+ might be reduced to the zero-valent state. Reinforcing this idea are Ni-organometallic complexes in which the Ni exhibits analogous reactivity properties when reduced to the zero-valent state. A zero-valent Ni stabilized exclusively with biological ligands would be remarkable and unprecedented in biology.Electronic Supplementary Material Supplementary Material is available in the online version of this article at  相似文献   
128.
129.
A vast number of lakes developed in the abandoned opencast lignite mines of Lusatia (East Germany) contain acidic waters (mmolSm–2a). Potential Fe(III) reduction measured by the accumulation of Fe(II) during anoxic incubation yielded similar rates in both types of sediments, however, the responses towards the supplementation of Fe(III) and organic carbon were different. Sulfate reduction rates estimated with 35S-radiotracer were much lower in the slightly acidic sediment than in the pH-neutral sediment (156 v.s. 738mmolSO4 2–m–2a–1). However, sulfate reduction rates were increased by the addition of organic carbon. Severe limitation of sulfate-reducing bacteria under acidic conditions was also reflected by low most probable numbers (MPN). High MPN of acidophilic iron- and sulfur-oxidizing bacteria in acidic sediments indicated a high reoxidation potential. The results show that potentials for reductive processes are present in acidic sediments and that these are determined mainly by the availability of oxidants and organic matter.  相似文献   
130.
The primary role of cellular gamma glutamyltransferase (GGT) is to metabolize extracellular reduced glutathione (GSH), allowing for precursor amino acids to be assimilated and reutilized for intracellular GSH synthesis. Paradoxically, recent experimental studies indicate that cellular GGT may also be involved in the generation of reactive oxygen species in the presence of iron or other transition metals. Although the relationship between cellular GGT and serum GGT is not known and serum GGT activity has been commonly used as a marker for excessive alcohol consumption or liver diseases, our series of epidemiological studies consistently suggest that serum GGT within its normal range might be an early and sensitive enzyme related to oxidative stress. For example, serum and dietary antioxidant vitamins had inverse, dose-response relations to serum GGT level within its normal range, whereas dietary heme iron was positively related to serum GGT level. More importantly, serum GGT level within its normal range positively predicted F2-isoprostanes, an oxidative damage product of arachidonic acid, and fibrinogen and C-reactive protein, markers of inflammation, which were measured 5 or 15 years later, in dose-response manners. These findings suggest that strong associations of serum GGT with many cardiovascular risk factors and/or events might be explained by a mechanism related to oxidative stress. Even though studies on serum and/or cellular GGT is at a beginning stage, our epidemiological findings suggest that serum GGT might be useful in studying oxidative stress-related issues in both epidemiological and clinical settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号