首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2266篇
  免费   67篇
  国内免费   63篇
  2023年   11篇
  2022年   10篇
  2021年   24篇
  2020年   25篇
  2019年   30篇
  2018年   19篇
  2017年   24篇
  2016年   23篇
  2015年   33篇
  2014年   37篇
  2013年   67篇
  2012年   33篇
  2011年   36篇
  2010年   38篇
  2009年   75篇
  2008年   78篇
  2007年   91篇
  2006年   79篇
  2005年   88篇
  2004年   71篇
  2003年   74篇
  2002年   66篇
  2001年   63篇
  2000年   79篇
  1999年   91篇
  1998年   100篇
  1997年   88篇
  1996年   84篇
  1995年   91篇
  1994年   70篇
  1993年   86篇
  1992年   76篇
  1991年   79篇
  1990年   72篇
  1989年   53篇
  1988年   64篇
  1987年   43篇
  1986年   45篇
  1985年   49篇
  1984年   30篇
  1983年   15篇
  1982年   14篇
  1981年   25篇
  1980年   14篇
  1979年   6篇
  1978年   6篇
  1977年   10篇
  1976年   3篇
  1974年   2篇
  1972年   4篇
排序方式: 共有2396条查询结果,搜索用时 15 毫秒
981.
Acid phosphatase role in chickpea/maize intercropping   总被引:7,自引:1,他引:6  
Li SM  Li L  Zhang FS  Tang C 《Annals of botany》2004,94(2):297-303
Background and aims Organic P comprises 30–80 %of the total P in most agricultural soils. It has been proventhat chickpea facilitates P uptake from an organic P sourceby intercropped wheat. In this study, acid phosphatase excretedfrom chickpea roots is quantified and the contribution of acidphosphatase to the facilitation of P uptake by intercroppedmaize receiving phytate is examined. • Methods For the first experiment using hydroponics, maize(Zea mays ‘Zhongdan No. 2’) and chickpea (Cicerarietinum ‘Sona’) were grown in either the sameor separate containers, and P was supplied as phytate, KH2PO4at 0·25 mmol P L–1, or not at all. The second experimentinvolved soil culture with three types of root separation betweenthe two species: (1) plastic sheet, (2) nylon mesh, and (3)no barrier. Maize plants were grown in one compartment and chickpeain the other. Phosphorus was supplied as phytate, Ca(H2PO4)2at 50 mg P kg–1, or no P added. • Key results In the hydroponics study, the total P uptakeby intercropped maize supplied with phytate was 2·1-foldgreater than when it was grown as a monoculture. In the soilexperiment, when supplied with phytate, total P uptake by maizewith mesh barrier and without root barrier was 2·2 and1·5 times, respectively, as much as that with solid barrier.In both experiments, roots of both maize and chickpea suppliedwith phytate and no P secreted more acid phosphatase than thosewith KH2PO4 or Ca(H2PO4)2. However, average acid phosphataseactivity of chickpea roots supplied with phytate was 2–3-foldas much as maize. Soil acid phosphatase activity in the rhizosphereof chickpea was also significantly higher than maize regardlessof P sources. • Conclusions Chickpea can mobilize organic P in both hydroponicand soil cultures, leading to an interspecific facilitationin utilization of organic P in maize/chickpea intercropping.  相似文献   
982.
Many genes in maize (Zea mays L.) are revealed by mutations that cause phenotypic variation from normal. These mutants are valuable resources of genetic information. From among the huge collection of maize mutants, it is ultimately necessary to establish which alleles are of the same genes and which are novel genes. Although any given mutant can be subjected to complementation tests or can be mapped by using conventional techniques, the number of mutants at this time makes these approaches prohibitive to encompass the whole collection. Here we describe procedures to efficiently map large numbers of mutants. Included are methods for generating polymorphic mapping progenies, for simply and rapidly preparing samples to use in polymerase chain reaction (PCR), for tissue pooling and application of simple sequence repeat (SSR), markers, and for stepwise determination of linkage followed by mapping to chromosomal region.  相似文献   
983.
Effects of nitrate, chloride and chlorate ions upon nitrate and chlorate uptake by roots of maize ( Zea mays L., cv. B73) seedlings were examined. Net nitrate uptake, 36ClO3 influx and 36Cl influx (the latter two in a background of 0.5 m M KNO3) displayed similar pH profiles with optima at pH 5.5 and below. External, non-labeled chloride had little effect on the accumulation of 36ClO3 (both in 5 h and 20 min uptake assays), while nitrate and chlorate had almost identical, marked inhibitory effects. Nitrate pretreatment caused an apparent induction of both 36ClO3 and 15NO3 uptake activities. After 5 h of treatment in nitrate, the uptake activities of chloride- and chlorate-pretreated plants increased to that of nitrate-pretreated plants. During 6 h exposure to chlorate, 36ClO3 uptake activity of nitrate-pretreated plants decreased to that of chlorate- and chloride-pretreated plants. The results support the existence of a shared nitrate/chlorate transport system in maize roots which is not inhibited by external chloride, and which is induced by nitrate, but not by chlorate or chloride. The suggestion is made that selection of chlorate-resistant mutants of maize can identify nitrate uptake as well as nitrate reductase mutants.  相似文献   
984.
985.
986.
Ding L  Wang KJ  Jiang GM  Biswas DK  Xu H  Li LF  Li YH 《Annals of botany》2005,96(5):925-930
BACKGROUND AND AIMS: New maize (Zea mays) hybrids outperformed old ones even at reduced N rates. Understanding the mechanisms of the differences in performance between newer and older hybrids under N deficiency could provide avenues for breeding maize cultivars with large yield under N deficiency, and reduce environmental pollution caused by N fertilizers. METHODS: N deficiency effects on grain weight, plant weight, harvest index, leaf area and photosynthetic traits were studied in the field for six maize hybrids released during the past 50 years to compare their tolerance and to explore their physiological mechanisms. KEY RESULTS: N deficiency decreased grain yield and plant weight in all hybrids, especially in the older hybrids. However, there was no significant difference in harvest index, rate of light-saturated photosynthesis (Psat) 20 d before flowering, leaf area or plant weight at flowering between the N-deficient and control plants of all hybrids. Dry matter production after flowering of the N-deficient plants was significantly lower than that of the control plants in all hybrids, especially in the older hybrids, and was mostly due to differences in the rate of decrease in photosynthetic capacity during this stage. The lower Psat of the older hybrids was not due to stomatal limitation, as there was no significant difference in stomatal conductance (gs) and intercellular CO2 concentration (Ci) between the hybrids. N deficiency accelerated senescence, i.e. decreased chlorophyll and soluble protein contents, after anthesis more for the earlier released hybrids than for the later ones. N deficiency decreased phosphoenolpyruvate carboxylase (PEPCase) activity significantly more in older hybrids than newer hybrids, and affected the maximal efficiency of PSII photochemistry (Fv/Fm) only in the old hybrids and at the late stage. CONCLUSIONS: Compared with older (earlier released) hybrids, newer (later released) hybrids maintained greater plant and grain weight under N deficiency because their photosynthetic capacity decreased more slowly after anthesis, associated with smaller non-stomatal limitations due to maintenance of PEPCase activity, and chlorophyll and soluble protein content.  相似文献   
987.
The biotrophic pathogen Ustilago maydis, the causative agent of corn smut disease, infects one of the most important crops worldwide – Zea mays. To successfully colonize its host, U. maydis secretes proteins, known as effectors, that suppress plant defense responses and facilitate the establishment of biotrophy. In this work, we describe the U. maydis effector protein Cce1. Cce1 is essential for virulence and is upregulated during infection. Through microscopic analysis and in vitro assays, we show that Cce1 is secreted from hyphae during filamentous growth of the fungus. Strikingly, Δcce1 mutants are blocked at early stages of infection and induce callose deposition as a plant defense response. Cce1 is highly conserved among smut fungi and the Ustilago bromivora ortholog complemented the virulence defect of the SG200Δcce1 deletion strain. These data indicate that Cce1 is a core effector with apoplastic localization that is essential for U. maydis to infect its host.  相似文献   
988.
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号