首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2266篇
  免费   67篇
  国内免费   63篇
  2023年   11篇
  2022年   10篇
  2021年   24篇
  2020年   25篇
  2019年   30篇
  2018年   19篇
  2017年   24篇
  2016年   23篇
  2015年   33篇
  2014年   37篇
  2013年   67篇
  2012年   33篇
  2011年   36篇
  2010年   38篇
  2009年   75篇
  2008年   78篇
  2007年   91篇
  2006年   79篇
  2005年   88篇
  2004年   71篇
  2003年   74篇
  2002年   66篇
  2001年   63篇
  2000年   79篇
  1999年   91篇
  1998年   100篇
  1997年   88篇
  1996年   84篇
  1995年   91篇
  1994年   70篇
  1993年   86篇
  1992年   76篇
  1991年   79篇
  1990年   72篇
  1989年   53篇
  1988年   64篇
  1987年   43篇
  1986年   45篇
  1985年   49篇
  1984年   30篇
  1983年   15篇
  1982年   14篇
  1981年   25篇
  1980年   14篇
  1979年   6篇
  1978年   6篇
  1977年   10篇
  1976年   3篇
  1974年   2篇
  1972年   4篇
排序方式: 共有2396条查询结果,搜索用时 31 毫秒
891.
892.
A model of maize stomatal behaviour has been developed, in which stomatal conductance is linked to the concentration of abscisic acid ([ABA]) in the xylem sap, with a sensitivity dependent upon the leaf water potential (Ψ1). It was tested against two alternative hypotheses, namely that stomatal sensitivity to xylem [ABA] would be linked to the leaf-to-air vapour pressure difference (VPD), or to the flux of ABA into the leaf. Stomatal conductance (gs) was studied: (1) in field-grown plants whose xylem [ABA] and Ψ1 depended on soil water status and evaporative demand; (2) in field-grown plants fed with ABA solutions such that xylem [ABA] was artificially raised, thereby decreasing gs and increasing Ψ1 and leaf-to-air VPD; and (3) in ABA-fed detached leaves exposed to varying evaporative demands, but with a constant and high Ψ1. The same relationships between gs, xylem [ABA] and Ψ1, showing lower stomatal sensitivity to [ABA] at high Ψ1, applied whether variations in xylem [ABA] were due to natural increase or to feeding, and whether variations in Ψ1, were due to changes in evaporative demand or to the increased Ψ1 observed in ABA-fed plants. Conversely, neither the leaf-to-air VPD nor the ABA flux into the leaf accounted for the observed changes in stomatal sensitivity to xylem [ABA]. The model, using parameters calculated from previous field data and the detached-leaf data, was tested against the observations of both ABA-fed and droughted plants in the field. It accounted with reasonable accuracy for changes in gs (r2 ranging from 0.77 to 0.81). These results support the view that modelling of stomatal behaviour requires consideration of both chemical and hydraulic aspects of root-to-shoot communication.  相似文献   
893.
Summary Random amplified polymorphic DNA (RAPD) markers were analyzed in materials from a partial diallel, including 16 corn F1 hybrids (with five reciprocals) and their five parental inbreds. Using 21 primers, we scored a total of 140 different fragments for their presence/absence and intensity variation, where appropriate. When all 21 genotypes were taken into consideration, 20.7% of these fragments were nonpolymorphic, 37.1% were unambiguously polymorphic, and 42.1% were quantitatively polymorphic. Unambiguous polymorphisms were distinguished by the simple presence or absence of a specific fragment in the inbred genotypes, whereas quantitative polymorphisms exhibited a variation in the intensity of a fragment. Of the F1 patterns, 95.2% of the unambiguously polymorphic situations could be interpreted genetically by assuming complete dominance of the presence of the parental fragment, while 3.2% of the F1 patterns exhibited a fragment intensity that was intermediate between the two parental patterns (partial dominance). For quantitative polymorphisms, values of 88.1% for complete dominance and 5.0% for partial dominance were obtained. The results suggest that specific types of errors can be detected in RAPD analysis, that uniparental inheritance is not common, and that RAPD analysis might be more prudently used for some applications than for others.  相似文献   
894.
895.
The En/Spm-encoded TNPA protein binds to 12-bp DNA sequence motifs that are present in the sub-termini of the transposable element. DNA binding of TNPA to monomeric and dimeric forms of the binding motif was analyzed by gel retardation and cross-linking studies. A DNA binding domain at the N-terminal and a dimerization domain at the C-terminal portion of TNPA were localized using deletion derivatives of TNPA. These domains are novel since no apparent homology has been found in the data bases. The stoichiometry of the TNPA-DNA complexes was analyzed. A special complex is formed with a tail-to-tail dimeric DNA binding motif, most probably involving two DNA-bound TNPA molecules that interact via their dimerization domains. In redox reactions the requirement for one or two disulfide bonds for DNA binding of TNPA was shown. The implications of these findings for the excision mechanism of En/Spm are discussed.  相似文献   
896.
Leaves of 7- and 18-day-old plants of two maize strains, one resistant (LIZA) and one sensitive (LG11) to water stress, were floated in 1 m M paraquat and 1 m M H2O2 for 12 h in light and in darkness. The aim of this work was to analyse the effects of these substances on the activities of enzymes involved in the scavenging of active oxygen species during senescence. Three senescence parameters; chlorophyll loss, lipid peroxidation and conductivity; showed a general cell damage caused by both oxidative treatments and revealed a higher tolerance of LIZA than LG11 to paraquat and H2O2 both in light and in darkness. Activities of antioxidative enzymes increased by the effect of oxidative treatments in young and senescent leaves of the drought-resistant maize strain LIZA. These increases were about 3-to 6-fold in glutathione reductase. 3-to 4-fold in superoxide dismutase and 2-fold in ascorbate peroxidase activities. The possible correlation between water stress resistance. senescence and the potential of antioxidant enzymes was analysed.  相似文献   
897.
The iron (Fe) efficient maize cultivar WF9 and the Fe inefficient maize mutant ys1 were grown in nutrient solutions with varied Fe supply. Changes in pH, reducing capacity of the roots and the release of Fe(III) reducing compounds were monitored over a period of 11 days. In both cultivars under Fe deficiency, there was no increased release of protons or reducing compounds and no increased reducing capacity of the roots. Indeed, the Fe(III) reduction of the roots of both cultivars tended to be higher in Fe sufficient plants. In contrast to some recent reports, these results demonstrate that the Fe efficient maize cultivar WF9 does not respond to Fe deficiency by strategy I mechanisms. This suggests that differences in Fe efficiency between the two cultivars are probably due to use of strategy II mechanisms for Fe acquisition.  相似文献   
898.
The carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea mays L.) grown hydroponically at a constant pH on either 4 mM or 12 mM NO3 - or NH4 + nutrition were investigated using either 14C or 15N techniques. Greater allocation of 14C to amino-N fractions occurred at the expense of allocation of 14C to carbohydrate fractions in NH4 +-compared to NO3 --fed plants. The [14C]carbohydrate:[14C]amino-N ratios were 1.5-fold and 2.0-fold greater in shoots and roots respectively of 12 mM NO3 --compared to 12 mM NH4 +-fed wheat. In both 4 mM and 12 mM N-fed maize the [14C]carbohydrate:[14C]amino-N ratios were approximately 1.7-fold and 2.0-fold greater in shoots and roots respectively of NO3 --compared to NH4 +-fed plants. Similar results were observed in roots of wheat and maize grown in split-root culture with one root-half in NO3 --and the other in NH4 +-containing nutrient media. Thus the allocation of carbon to the amino-N fractions occurred at the expense of carbohydrate fractions, particularly within the root. Allocation of 14N and 15N within separate sets of plants confirmed that NH4 --fed plants accumulated more amino-N compounds than NO3 --fed plants. Wheat roots supplied with 15NH4 + for 8 h were found to accumulate 15NH4 + (8.5 g 15N g-1 h-1) whereas in maize roots very little 15NH4 + accumulated (1.5 g 15N g-1 h-1)It is proposed that the observed accumulation of 15NH4 + in wheat roots in these experiments is the result of limited availability of carbon within the roots of the wheat plants for the detoxification of NH4 +, in contrast to the situation in maize. Higher photosynthetic capacity and lower shoot: root ratios of the C4 maize plants ensure greater carbon availability to the root than in the C3 wheat plants. These differences in carbon and nitrogen partitioning between NO3 --and NH4 +-fed wheat and maize could be responsible for different responses of wheat and maize root growth to NO3 - and NH4 + nutrition.  相似文献   
899.
900.
The schizogenous intercellular spaces (i. e. those small spaces formed by cell walls coming apart) in the cortex of the roots of field-grown maize ( Zea mays L.) were studied in planed transverse faces of frozen tissue, very lightly etched and coated with Al. The spaces were mostly filled with either fluid or, in the drier roots, with a flaky deposit. This deposit may have been left behind when water was withdrawn, or may have been debris dislodged by the planing. Even in roots with mostly dry spaces, some wet, fluid-filled spaces remained. X-ray microanalysis of the wet spaces revealed that the fluid contained K (average concentration 230 m M , range 50–750 m M ) and Ca (average concentration 100 m M , range 15 to 550 m M ), and occasionally small amounts of S, P or Cl. No other balancing inorganic anions were detected. Concentrations in the wet intercellular spaces showed considerable variation between one space and the next, and were often quite different from those in the vacuoles of adjacent cells. However, overall the vacuoles of the cells surrounding the spaces showed mean concentrations, and distributions of concentrations, indistinguishable from those of the wet spaces. Analyses of the deposits in the dry spaces were less reliable because of their uneven surface, but the same ions in about the same amounts were found there. The contents of the spaces showed no correlation with either the time of collection of the roots, or with distance from the root tip. Nor was there any change in concentration of these ions in the spaces when the roots were grown for 19 h in distilled water mist. Experiments and evidence are presented suggesting that the observed distribution of ions is probably not an artefact. Pilot experiments showed similar distributions of extracellular ions in roots of barley, Sudan grass and soybean  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号