首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   10篇
  国内免费   4篇
  143篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   8篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   9篇
  2013年   13篇
  2012年   6篇
  2011年   7篇
  2010年   8篇
  2009年   5篇
  2008年   9篇
  2007年   6篇
  2006年   17篇
  2005年   9篇
  2004年   9篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
21.
Tissue-specific differentially methylated regions (tDMRs) have been identified and implicated for their indispensable involvement in mammalian development and tissue differentiation. In this report, a quantitative DNA methylation analysis was performed for 13 human orthologous regions of recently confirmed mouse tDMRs by using Sequenom Mass Array, by which bisulfite-treated fragments are quantitatively detected using time of flight mass spectroscopy analysis. Eight regions were shown as tDMRs in various tissues from three independent individuals. Testis DNA samples from eight individuals were also analyzed for methylation. Interestingly, there is evidence that the DNA methylation level is divergent among individuals. DNA methylation levels of five testis-specific DMRs were significantly inversely correlated with the number of spermatocytes. However, a positive correlation was seen at tDMRs located near the TRIM38 and CASZ1 genes. Our results indicate that tDMRs are conserved between mouse and human and may have an important role in regulating tissue function, differentiation, and aging.  相似文献   
22.
23.
Ovarian cancer (OV) is the most lethal gynecologic malignancy. One major reason of the high mortality of the disease is due to platinum-based chemotherapy resistance. Increasing evidence reveal the important biological functions and clinical significance of zinc finger proteins (ZNFs) in OV. In the present study, the relationship between the zinc finger protein 76 (ZNF76) and clinical outcome and platinum resistance in patients with OV was explored. We further analyzed ZNF76 expression via multiple gene expression databases and identified its functional networks using cBioPortal. RT-qPCR and IHC assay shown that the ZNF76 mRNA and protein expression were significantly lower in OV tumor than that in normal ovary tissues. A strong relationship between ZNF76 expression and platinum resistance was determined in patients with OV. The low expression of ZNF76 was associated with worse survival in OV. Multivariable analysis showed that the low expression of ZNF76 was an independent factor predicting poor outcome in OV. The prognosis value of ZNF76 in pan-cancer was validated from multiple cohorts using the PrognoScan database and GEPIA 2. A gene-clinical nomogram was constructed by multivariate cox regression analysis, combined with clinical characterization and ZNF76 expression in TCGA. Functional network analysis suggested that ZNF76 was involved in several biology progressions which associated with OV. Ten hub genes (CDC5L, DHX16, SNRPC, LSM2, CUL7, PFDN6, VARS, HSD17B8, PPIL1, and RGL2) were identified as positively associated with the expression of ZNF76 in OV. In conclusion, ZNF76 may serve as a promising prognostic-related biomarker and predict the response to platinum in OV patients.  相似文献   
24.
Roughly two-thirds of all breast cancers are ERα-positive and can be treated with the antiestrogen, Tamoxifen, however resistance occurs in 33% of women who take the drug for more than 5 y. Aberrant DNA methylation, an epigenetic mechanism that alters gene expression in cancer, is thought to play a role in this resistance. To develop an understanding of Tamoxifen-resistance and identify novel pathways and targets of aberrant methylation, DNA from MCF-7 breast cancer cells and Tamoxifen-resistant derivatives, TMX2–11 and TMX2–28, were analyzed using the Illumina HumanMethylation450 BeadChip. Normalizing against MCF-7 values, ERα-positive TMX2–11 had 4000 hypermethylated sites and ERα-negative TMX2–28 had over 33 000. Analysis of CpG sites altered in both TMX2–11 and TMX2–28 revealed that the Tamoxifen-resistant cell lines share 3000 hypermethylated and 200 hypomethylated CpGs. ZNF350 and MAGED1, two genes hypermethylated in both cell lines, were examined in greater detail. Treatment with 5-aza-2′deoxycitidine caused a significant reduction in promoter methylation of both ZNF350 and MAGED1 and a corresponding increase in expression in TMX2–28. A similar relationship between methylation and expression was not detected in TMX2–11. Our findings are indicative of the variable responses to methylation-targeted breast cancer therapy and highlight the need for biomarkers that accurately predict treatment outcome.  相似文献   
25.
锌指蛋白185(ZNF185)属于LIM结构域蛋白,参与细胞的增殖和分化,在多种肿瘤细胞中具有抑癌基因的功能.ZNF185在正常人血液系统细胞中高表达,但目前对白血病细胞的作用未见研究.采用Western blot检测人外周血中性粒细胞、急性粒细胞白血病细胞系HL-60和慢性粒细胞白血病细胞系K562细胞中ZNF185的表达,发现ZNF185在HL-60和K562细胞中的表达水平显著低于外周血中性粒细胞.为了阐明ZNF185对慢性粒细胞白血病细胞增殖的影响,从人外周血中性粒细胞克隆ZNF185编码序列,转染K562细胞,MTT检测细胞增殖,发现过表达ZNF185显著抑制K562细胞的增殖.甲基化特异PCR分析表明:ZNF185启动子在HL-60和K562细胞中高甲基化,用5-氮杂-2′-脱氧胞苷处理K562细胞,促进ZNF185的表达,显著抑制细胞增殖.研究结果表明,ZNF185启动子高甲基化导致其在K562细胞中的表达降低和细胞增殖抑制作用减弱.可能是慢性粒细胞白血病发生或发展的原因之一.  相似文献   
26.
27.
锌指蛋白基因家族是人类最大的基因家族之一,目前已知的很多锌指蛋白成员都是转录调控因子.KRAB/C2H2型锌指蛋白是一类重要的转录因子,ZNF424是该亚家族的一个新成员.已经初步证明ZNF424具有转录激活作用,为了进一步研究ZNF424各结构域激活程度和在信号途径中的作用,设计出引物,以pCMVB-D-ZNF424重组质粒作为模板,PCR扩增出含ZNF424基因的KRAB、LINK和ZNF的3个含不同结构域的区域,克隆到pMD18T-载体,然后内切酶切下各目的片段,再构建出pCMVB-DK-RAB、pCMVB-DL-INK、pCMVB-D-ZNF、pCMVT-ag2BK-RAB、pCMVT-ag2BL-INK和pCMVT-ag2CZ-NF共6个缺失突变重组质粒,为进一步研究ZNF424基因功能奠定基础.  相似文献   
28.
Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression.  相似文献   
29.
An impressive, but often short objective response was obtained in many tumor patients treated with different targeted therapies, but most of the patients develop resistances against these drugs. So far, a number of distinct mechanisms leading to intrinsic as well as acquired resistances have been identified in tumors of distinct origin. These can arise from genetic alterations, like mutations, truncations, and amplifications or due to deregulated expression of various proteins and signal transduction pathways, but also from cellular heterogeneity within tumors after an initial response. Therefore, biomarkers are urgently needed for cancer prognosis and personalized cancer medicine. The application of “ome”-based technologies including cancer (epi)genomics, next generation sequencing, cDNA microarrays and proteomics might led to the predictive or prognostic stratification of patients to categorize resistance mechanisms and to postulate combinations of treatment strategies. This review discusses the implementation of proteome-based analysis to identify markers of pathway (in)activation in tumors and the resistance mechanisms, which represent major clinical problems as a tool to optimize individually tailored therapies based on targeted drugs. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号