首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   25篇
  国内免费   8篇
  2023年   9篇
  2022年   9篇
  2021年   13篇
  2020年   19篇
  2019年   18篇
  2018年   21篇
  2017年   19篇
  2016年   21篇
  2015年   26篇
  2014年   28篇
  2013年   43篇
  2012年   74篇
  2011年   26篇
  2010年   16篇
  2009年   13篇
  2008年   12篇
  2007年   10篇
  2006年   5篇
  2005年   11篇
  2004年   12篇
  2003年   13篇
  2002年   4篇
  2001年   7篇
  2000年   3篇
  1999年   8篇
  1998年   3篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
排序方式: 共有485条查询结果,搜索用时 484 毫秒
301.
Lafora disease (LD, OMIM254780, ORPHA501) is a rare neurodegenerative form of epilepsy related to mutations in two proteins: laforin, a dual specificity phosphatase, and malin, an E3-ubiquitin ligase. Both proteins form a functional complex, where laforin recruits specific substrates to be ubiquitinated by malin. However, little is known about the mechanism driving malin–laforin mediated ubiquitination of its substrates. In this work we present evidence indicating that the malin–laforin complex interacts physically and functionally with the ubiquitin conjugating enzyme E2-N (UBE2N). This binding determines the topology of the chains that the complex is able to promote in the corresponding substrates (mainly K63-linked polyubiquitin chains). In addition, we demonstrate that the malin–laforin complex interacts with the selective autophagy adaptor sequestosome-1 (p62). Binding of p62 to the malin–laforin complex allows its recognition by LC3, a component of the autophagosomal membrane. In addition, p62 enhances the ubiquitinating activity of the malin–laforin E3-ubiquitin ligase complex. These data enrich our knowledge on the mechanism of action of the malin–laforin complex as an E3-ubiquitin ligase and reinforces the role of this complex in targeting substrates toward the autophagy pathway.  相似文献   
302.
Amyloid beta (Aβ) protein is the primary proteinaceous deposit found in the brains of patients with Alzheimer's disease (AD). Evidence suggests that Aβ plays a central role in the development of AD pathology. Here, we show in PC12 cells, Aβ impairs tropomyosin receptor kinase A (TrkA) ubiquitination, phosphorylation, and its association with p75NTR, p62, and TRAF6 induced by nerve growth factor. The ubiquitination and tyrosine phosphorylation of TrkA was also found to be impaired in postmortem human AD hippocampus compared to control. Interestingly, the nitrotyrosylation of TrkA was increased in AD hippocampus and this explains why the phosphotyrosylation and ubiquitination of TrkA was impaired. In AD brain, the production of matrix metalloproteinase‐7 (MMP‐7), which cleaves proNGF, was reduced, thereby leading to the accumulation of pro‐NGF and a decrease in the level of active NGF. TrkA signaling events, including Ras/MAPK and phosphatidylinositol 3‐kinase (PI3K)/Akt pathways, are deactivated with Aβ and in the human AD hippocampus. Findings show that Aβ blocks the TrkA ubiquitination and downstream signaling similar to AD hippocampus.

  相似文献   

303.
304.
KL4 is a 21-residue functional peptide mimic of lung surfactant protein B, an essential protein for lowering surface tension in the alveoli. Its ability to modify lipid properties and restore lung compliance was investigated with circular dichroism, differential scanning calorimetry, and solid-state NMR spectroscopy. KL4 binds fluid lamellar phase PC/PG lipid membranes and forms an amphipathic helix that alters lipid organization and acyl chain dynamics. The binding and helicity of KL4 is dependent on the level of monounsaturation in the fatty acid chains. At physiologic temperatures, KL4 is more peripheral and dynamic in fluid phase POPC/POPG MLVs but is deeply inserted into fluid phase DPPC/POPG vesicles, resulting in immobilization of the peptide. Substantial increases in the acyl chain order are observed in DPPC/POPG lipid vesicles with increasing levels of KL4, and POPC/POPG lipid vesicles show small decreases in the acyl chain order parameters on addition of KL4. Additionally, a clear effect of KL4 on the orientation of the fluid phase PG headgroups is observed, with similar changes in both lipid environments. Near the phase transition temperature of the DPPC/POPG lipid mixtures, which is just below the physiologic temperature of lung surfactant, KL4 causes phase separation with the DPPC remaining in a gel phase and the POPG partitioned between gel and fluid phases. The ability of KL4 to differentially partition into lipid lamellae containing varying levels of monounsaturation and subsequent changes in curvature strain suggest a mechanism for peptide-mediated lipid organization and trafficking within the dynamic lung environment.  相似文献   
305.
Nbr1, a ubiquitous kinase scaffold protein, contains a PB1, and a ubiquitin-associated (UBA) domain. We show here that the nbr1 UBA domain binds to lysine-48 and -63 linked polyubiquitin-B chains. Nbr1 also binds to the autophagic effector protein LC3-A via a novel binding site. Ubiquitin-binding, but not PB1-mediated p62/SQSTM1 interaction, is required to target nbr1 to LC3 and polyubiquitin-positive bodies. Nbr1 binds additionally to proteins implicated in ubiquitin-mediated protein turnover and vesicle trafficking: ubiquitin-specific peptidases USP8, and the endosomal transport regulator p14/Robld3. Nbr1 thus contributes to specific steps in protein turnover regulation disrupted in several hereditary human diseases.

Structured summary

MINT-7034452: USP8 (uniprotkb:P40818) physically interacts (MI:0218) with NBR1 (uniprotkb:Q14596) by pull down (MI:0096)MINT-7034438: SQSTM1 (uniprotkb:Q13501) and LC3 (uniprotkb:Q9H492) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034309: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034323: NBR1 (uniprotkb:P97432) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034233: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with USP8 (uniprotkb:P40818) by two hybrid (MI:0018)MINT-7034207: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Robld3 (uniprotkb:Q9JHS3) by two hybrid (MI:0018)MINT-7034400, MINT-7034418: NBR1 (uniprotkb:Q14596) and LC3 (uniprotkb:Q9H492) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034167: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Ubiquitin B (uniprotkb:Q78XY9) by two hybrid (MI:0018)MINT-7034470: NBR1 (uniprotkb:Q14596) and USP8 (uniprotkb:P40818) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034194: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with LC3-A (uniprotkb:Q91VR7) by two hybrid (MI:0018)MINT-7034336: SQSTM1 (uniprotkb:Q13501) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034375: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with LC3 (uniprotkb:Q9H492) by pull down (MI:0096)MINT-7034350: NBR1 (uniprotkb:Q14596) and Ubiquitin (uniprotkb:P62988) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034181: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Tmed10 (uniprotkb:Q9D1D4) by two hybrid (MI:0018)MINT-7034220: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with ube2o (uniprotkb:Q6ZPJ3) by two hybrid (MI:0018)  相似文献   
306.
307.
TP53INP1 (tumor protein 53-induced nuclear protein 1) is a tumor suppressor, whose expression is downregulated in cancers from different organs. It was described as a p53 target gene involved in cell death, cell-cycle arrest and cellular migration. In this work, we show that TP53INP1 is also able to interact with ATG8-family proteins and to induce autophagy-dependent cell death. In agreement with this finding, we observe that TP53INP1, which is mainly nuclear, relocalizes in autophagosomes during autophagy where it is eventually degraded. TP53INP1-LC3 interaction occurs via a functional LC3-interacting region (LIR). Inactivating mutations of this sequence abolish TP53INP1-LC3 interaction, relocalize TP53INP1 in autophagosomes and decrease TP53INP1 ability to trigger cell death. Interestingly, TP53INP1 binds to ATG8-family proteins with higher affinity than p62, suggesting that it could partially displace p62 from autophagosomes, modifying thereby their composition. Moreover, silencing the expression of autophagy related genes (ATG5 or Beclin-1) or inhibiting caspase activity significantly decreases cell death induced by TP53INP1. These data indicate that cell death observed after TP53INP1-LC3 interaction depends on both autophagy and caspase activity. We conclude that TP53INP1 could act as a tumor suppressor by inducing cell death by caspase-dependent autophagy.  相似文献   
308.
Accidental or therapeutic exposure to ionizing radiation has severe physiological consequences and can result in cell death. We previously demonstrated that deficiency or blockade of the ubiquitously expressed receptor CD47 results in remarkable cell and tissue protection against ischemic and radiation stress. Antagonists of CD47 or its ligand THBS1/thrombospondin 1 enhance cell survival and preserve their proliferative capacity. However the signaling pathways that mediate this cell-autonomous radioprotection are unclear. We now report a marked increase in autophagy in irradiated T-cells and endothelial cells lacking CD47. Irradiated T cells lacking CD47 exhibit significant increases in formation of autophagosomes comprising double-membrane vesicles visualized by electron microscopy and numbers of MAP1LC3A/B+ puncta. Moreover, we observed significant increases in BECN1, ATG5, ATG7 and a reduction in SQSTM1/p62 expression relative to irradiated wild-type T cells. We observed similar increases in autophagy gene expression in mice resulting from blockade of CD47 in combination with total body radiation. Pharmacological or siRNA-mediated inhibition of autophagy selectively sensitized CD47-deficient cells to radiation, indicating that enhanced autophagy is necessary for the prosurvival response to CD47 blockade. Moreover, re-expression of CD47 in CD47-deficient T cells sensitized these cells to death by ionizing radiation and reversed the increase in autophagic flux associated with survival. This study indicates that CD47 deficiency confers cell survival through the activation of autophagic flux and identifies CD47 blockade as a pharmacological route to modulate autophagy for protecting tissue from radiation injury.  相似文献   
309.
Adriamycin (ADM) is currently one of the most effective chemotherapeutic agents in breast cancer treatment. However, growing resistance to ADM could lead to treatment failure and poor outcome. PLAC8 was reported as a novel highly conserved protein and functioned as an oncogene or tumour suppressor in various tumours. Here, we found higher PLAC8 expression was correlated with worse outcome and aggressive phenotype in breast cancer. Breast cancer patients with higher PLAC8 expression showed potential ADM resistance. In vitro experiments further confirmed that PLAC8 inhibited by siRNA or enforced overexpression by infecting pcDNA3.1(C)-PLAC8 plasmid correspondingly decreased or increased ADM resistance. Subsequently, we demonstrated that ectopic PLAC8 expression in MCF-7/ADMR cell blocked the accumulation of the autophagy-associated protein LC3 and resulted in cellular accumulation of p62. Rapamycin-triggered autophagy significantly increased cell response to ADM, while the autophagy inhibitor 3-MA enhanced ADM resistance. 3-MA and PLAC8 could synergistically cause ADM resistance via blocking the autophagy process. Additionally, the down-regulation of p62 by siRNA attenuated the activation of autophagy and PLAC8 expression in breast cancer cells. Thus, our findings suggest that PLAC8, through the participation of p62, inhibits autophagy and consequently results in ADM resistance in breast cancer. PLAC8/p62 pathway may act as novel therapeutic targets in breast cancer treatment and has potential clinical application in overcoming ADM resistance.  相似文献   
310.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号