首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   24篇
  国内免费   8篇
  486篇
  2023年   10篇
  2022年   9篇
  2021年   13篇
  2020年   19篇
  2019年   18篇
  2018年   21篇
  2017年   19篇
  2016年   21篇
  2015年   26篇
  2014年   28篇
  2013年   43篇
  2012年   74篇
  2011年   26篇
  2010年   16篇
  2009年   13篇
  2008年   12篇
  2007年   10篇
  2006年   5篇
  2005年   11篇
  2004年   12篇
  2003年   13篇
  2002年   4篇
  2001年   7篇
  2000年   3篇
  1999年   8篇
  1998年   3篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
排序方式: 共有486条查询结果,搜索用时 9 毫秒
131.
CHDH (choline dehydrogenase) is an enzyme catalyzing the dehydrogenation of choline to betaine aldehyde in mitochondria. Apart from this well-known activity, we report here a pivotal role of CHDH in mitophagy. Knockdown of CHDH expression impairs CCCP-induced mitophagy and PARK2/parkin-mediated clearance of mitochondria in mammalian cells, including HeLa cells and SN4741 dopaminergic neuronal cells. Conversely, overexpression of CHDH accelerates PARK2-mediated mitophagy. CHDH is found on both the outer and inner membranes of mitochondria in resting cells. Interestingly, upon induction of mitophagy, CHDH accumulates on the outer membrane in a mitochondrial potential-dependent manner. We found that CHDH is not a substrate of PARK2 but interacts with SQSTM1 independently of PARK2 to recruit SQSTM1 into depolarized mitochondria. The FB1 domain of CHDH is exposed to the cytosol and is required for the interaction with SQSTM1, and overexpression of the FB1 domain only in cytosol reduces CCCP-induced mitochondrial degradation via competitive interaction with SQSTM1. In addition, CHDH, but not the CHDH FB1 deletion mutant, forms a ternary protein complex with SQSTM1 and MAP1LC3 (LC3), leading to loading of LC3 onto the damaged mitochondria via SQSTM1. Further, CHDH is crucial to the mitophagy induced by MPP+ in SN4741 cells. Overall, our results suggest that CHDH is required for PARK2-mediated mitophagy for the recruitment of SQSTM1 and LC3 onto the mitochondria for cargo recognition.  相似文献   
132.
133.
Nrf2 signaling is vital for protecting cells against oxidative stress. However, its hyperactivation is frequently found in liver cancer through excessive build‐up of p62/SQSTM1 bodies that sequester Keap1, an adaptor of the E3‐ubiquitin ligase complex for Nrf2. Here, we report that the Bax‐binding protein MOAP‐1 regulates p62‐Keap1‐Nrf2 signaling through disruption of p62 bodies. Upon induction of cellular stresses that stimulate formation of p62 bodies, MOAP‐1 is recruited to p62 bodies and reduces their levels independent of the autophagy pathway. MOAP‐1 interacts with the PB1‐ZZ domains of p62 and interferes with its self‐oligomerization and liquid–liquid phase separation, thereby disassembling the p62 bodies. Loss of MOAP‐1 can lead to marked upregulation of p62 bodies, enhanced sequestration of Keap1 by p62 and hyperactivation of Nrf2 antioxidant target genes. MOAP‐1‐deficient mice exhibit an elevated tumor burden with excessive levels of p62 bodies and Nrf2 signaling in a diethylnitrosamine (DEN)‐induced hepatocarcinogenesis model. Together, our data define MOAP‐1 as a negative regulator of Nrf2 signaling via dissociation of p62 bodies.  相似文献   
134.
Intracellular accumulation of altered proteins, including p62 and ubiquitinated proteins, is the basis of most neurodegenerative disorders. The relationship among the accumulation of altered proteins, autophagy, and spinal cord dysfunction by cervical spondylotic myelopathy has not been clarified. We examined the expression of p62 and autophagy markers in the chronically compressed spinal cord of tiptoe-walking Yoshimura mice. In addition, we examined the expression and roles of p62 and autophagy in hypoxic neuronal cells. Western blot analysis showed the accumulation of p62, ubiquitinated proteins, and microtubule-associated protein 1 light chain 3 (LC3), an autophagic marker, in the compressed spinal cord. Immunohistochemical examinations showed that p62 accumulated in neurons, axons, astrocytes, and oligodendrocytes. Electron microscopy showed the expression of autophagy markers, including autolysosomes and autophagic vesicles, in the compressed spinal cord. These findings suggest the presence of p62 and autophagy in the degenerated compressed spinal cord. Hypoxic stress increased the expression of p62, ubiquitinated proteins, and LC3-II in neuronal cells. In addition, LC3 turnover assay and GFP-LC3 cleavage assay showed that hypoxic stress increased autophagy flux in neuronal cells. These findings suggest that hypoxic stress induces accumulation of p62 and autophagy in neuronal cells. The forced expression of p62 decreased the number of neuronal cells under hypoxic stress. These findings suggest that p62 accumulation under hypoxic stress promotes neuronal cell death. Treatment with 3-methyladenine, an autophagy inhibitor decreased the number of neuronal cells, whereas lithium chloride, an autophagy inducer increased the number of cells under hypoxic stress. These findings suggest that autophagy promotes neuronal cell survival under hypoxic stress. Our findings suggest that pharmacological inducers of autophagy may be useful for treating cervical spondylotic myelopathy patients.  相似文献   
135.
As the mitochondrion is vulnerable to oxidative stress, cells have evolved several strategies to maintain mitochondrial integrity, including mitochondrial protein quality control mechanisms and autophagic removal of damaged mitochondria. Involvement of an autophagy adaptor, Sqstm1/p62, in the latter process has been recently described. In the present study, we provide evidence that a portion of p62 directly localizes within the mitochondria and supports stable electron transport by forming heterogeneous protein complexes. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of mitochondrial proteins co-purified with p62 revealed that p62 interacts with several oxidation-prone proteins, including a few components of the electron transport chain complexes, as well as multiple chaperone molecules and redox regulatory enzymes. Accordingly, p62-deficient mitochondria exhibited compromised electron transport, and the compromised function was partially restored by in vitro delivery of p62. These results suggest that p62 plays an additional role in maintaining mitochondrial integrity at the vicinity of target machineries through its function in relation to protein quality control.  相似文献   
136.
ABSTRACT

The degradation of specific cargos such as ubiquitinated protein aggregates and dysfunctional mitochondria via macroautophagy/autophagy is facilitated by SQSTM1/p62, the first described selective autophagy receptor in metazoans. While the general process of autophagy plays crucial roles during aging, it remains unclear whether and how selective autophagy mediates effects on longevity and health. Two recent studies in the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster observed gene expression changes of the respective SQSTM1 orthologs in response to environmental stressors or age and showed that overexpression of SQSTM1 is sufficient to extend lifespan and improve proteostasis and mitochondrial function in an autophagy-dependent manner in these model organisms. These findings show that increased expression of the selective autophagy receptor SQSTM1 is sufficient to induce aggrephagy in C. elegans, and mitophagy in Drosophila, and demonstrate an evolutionarily conserved role for SQSTM1 in lifespan determination.  相似文献   
137.
A cDNA encoding a putative extracellular α-L-arabinofuranosidase was cloned from the basidiomycete Coprinopsis cinerea (CcAbf62A). CcAbf62A belongs to glycoside hydrolase family 62 (GH62), but is phylogenetically distinct from previously characterized GH62 enzymes. The recombinant CcAbf62A, expressed in Pichia pastoris, released L-arabinose from both wheat arabinoxylan and oat-spelt xylan. The enzyme activity for wheat arabinoxylan was increased by the addition of CcEst1, a carbohydrate esterase from C. cinerea.  相似文献   
138.
Bacterial infection relies on the micro-organism's ability to orchestrate the host's cell signalling such that the immune response is not activated. Conversely, the host cell has dedicated signalling pathways for coping with intrusions by pathogens. The autophagy of foreign micro-organisms (known as xenophagy) has emerged as one of the most powerful of these pathways, although the triggering mode remains largely unknown. In the present paper, we discuss the role that certain post-translational modifications (primarily ubiquitination) may play in the activation of xenophagy and how some bacteria have evolved mechanisms to subvert or hijack this process. In particular, we address the role played by P62/SQSTM1 (sequestosome 1). Finally, we discuss how autophagy can be subverted to eliminate bacteria-induced danger signals.  相似文献   
139.
Dendritic cells are important for the induction of T-lymphocyte-mediated immunity by acting as antigen-presenting cells. We have previously reported that dendritic cells are prevalent in the chronic non-expanding phase of rat apical periodontitis. To characterize these cells further, immunoelectron microscopy with three dendritic cell markers (CD11c, OX6, OX62) was conducted for samples from rat models of apical periodontitis. Dendritic cells were divided into two types (type I or type II). Most of the type I dendritic cells expressed CD11c, showed an irregular large profile, had typical cytoplasmic processes, and were recognized as the major dendritic cell population. Most of the type II dendritic cells expressed OX62, showed oval small profiles with a few thin short processes, and were sometimes observed infiltrating from blood vessels. Cell-to-cell contacts between type I dendritic cells and lymphocytes were the most frequently observed associations. These results suggest that dendritic cells are composed of heterogeneous populations that exhibit different phenotypes, morphologies, and maturation/differentiation/activation. This study was supported by Grants-in-Aid for Scientific Research (no. 11470402 to T.O., and nos. 15791091 and 18791393 to T.K.) from the Japan Society for the Promotion of Sciences.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号