首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   25篇
  国内免费   8篇
  2023年   9篇
  2022年   9篇
  2021年   13篇
  2020年   19篇
  2019年   18篇
  2018年   21篇
  2017年   19篇
  2016年   21篇
  2015年   26篇
  2014年   28篇
  2013年   43篇
  2012年   74篇
  2011年   26篇
  2010年   16篇
  2009年   13篇
  2008年   12篇
  2007年   10篇
  2006年   5篇
  2005年   11篇
  2004年   12篇
  2003年   13篇
  2002年   4篇
  2001年   7篇
  2000年   3篇
  1999年   8篇
  1998年   3篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
排序方式: 共有485条查询结果,搜索用时 78 毫秒
111.
Long-lived structural proteins, collagen and elastin, undergo continual non-enzymatic crosslinking during aging and in diabetic individuals. This abnormal protein crosslinking is mediated by advanced glycation end products (AGEs) generated by non-enzymatic glycosylation of proteins by glucose. The AGE-derived protein crosslinking of structural proteins contributes to the complications of long-term diabetes such as nephropathy, retinopathy, and neuropathy. AGE-crosslinks have also been implicated in age-related cardiovascular diseases. Potential treatment strategies for these AGE-derived complications include prevention of AGE-formation and breaking of the existing AGE-crosslinks. The therapeutic potential of the AGE-inhibitor, pimagedine (aminoguanidine), has been extensively investigated in animal models and in Phase 3 clinical trials. This review presents the pre-clinical and clinical studies using ALT-711, a highly potent AGE-crosslink breaker that has the ability to reverse already-formed AGE-crosslinks. Oral administration of ALT-711 has resulted in a rapid improvement in the elasticity of stiffened myocardium in experimental animals. Topical administration of ALT-711 was effective in improving the skin hydration of aged rats. The therapeutic potential of crosslink breakers for cardiovascular complications and dermatological alterations associated with aging and diabetes is discussed.  相似文献   
112.
Zhang  J.  Xing  G. M.  Yan  Z. Y.  Li  Zh. X. 《Russian Journal of Plant Physiology》2003,50(5):618-622
The content of -N-oxalyl-L-,-diaminopropionic acid (ODAP) and the activity of glycolate oxidase (GO) were positively correlated in the leaves of grass pea (Lathyrus sativus L.) seedlings. The activity of GO was kept at a steady level under the high light after treatment with ODAP. Although Na2S can activate GO, it cannot maintain the activity of GO under the high light. The content of ODAP increased and the activity of GO decreased with increasing oxalate concentration used for seedling treatment. The GO activity was high enough to keep photosynthesis at a steady level under high light. These findings suggested that Lathyrus sativus, using oxalate as a precursor to produce ODAP, protected the GO activity at high irradiance by scavenging the hydroxyl radicals.  相似文献   
113.
Hsc62, Hsc56, and GrpE,the third Hsp70 chaperone system of Escherichia coli   总被引:2,自引:0,他引:2  
Hsc62 is the third Hsp70 homolog of Escherichia coli, which we found previously. Hsc62 is structurally and biochemically similar to DnaK, but hscC gene encoding Hsc62 did not compensate for the defects in the dnaK-null mutant of E. coli MC4100 strain. We cloned the ybeV gene and purified the gene product named Hsc56, a 55,687-Da protein with a J-domain like sequence. Hsc56 stimulated the ATPase activity of only Hsc62 but not those of the other Hsp70 homologs, DnaK and Hsc66. Hsc56 contains the -His-Pro-Glu- sequence corresponding to the His-Pro-Asp motif in DnaJ, which is indispensable for DnaJ to interact with DnaK. Conversion of -His-Pro-Glu- to -Ala-Ala-Ala- abolished the ability of Hsc56 to stimulate the ATPase activity of Hsc62. GrpE, a nucleotide exchange factor for DnaK, also stimulated the ATPase activity of Hsc62 in the presence of Hsc56. Hsc62-Hsc56-GrpE is probably a new Hsp70 chaperone system of E. coli.  相似文献   
114.
Several amyotrophic lateral sclerosis (ALS)-related proteins such as FUS, TDP-43, and hnRNPA1 demonstrate liquid–liquid phase separation, and their disease-related mutations correlate with a transition of their liquid droplet form into aggregates. Missense mutations in SQSTM1/p62, which have been identified throughout the gene, are associated with ALS, frontotemporal degeneration (FTD), and Paget’s disease of bone. SQSTM1/p62 protein forms liquid droplets through interaction with ubiquitinated proteins, and these droplets serve as a platform for autophagosome formation and the antioxidative stress response via the LC3-interacting region (LIR) and KEAP1-interacting region (KIR) of p62, respectively. However, it remains unclear whether ALS/FTD-related p62 mutations in the LIR and KIR disrupt liquid droplet formation leading to defects in autophagy, the stress response, or both. To evaluate the effects of ALS/FTD-related p62 mutations in the LIR and KIR on a major oxidative stress system, the Keap1-Nrf2 pathway, as well as on autophagic turnover, we developed systems to monitor each of these with high sensitivity. These methods such as intracellular protein–protein interaction assay, doxycycline-inducible gene expression system, and gene expression into primary cultured cells with recombinant adenovirus revealed that some mutants, but not all, caused reduced NRF2 activation and delayed autophagic cargo turnover. In contrast, while all p62 mutants demonstrated sufficient ability to form liquid droplets, all of these droplets also exhibited reduced inner fluidity. These results indicate that like other ALS-related mutant proteins, p62 missense mutations result in a primary defect in ALS/FTD via a qualitative change in p62 liquid droplet fluidity.  相似文献   
115.
The effect of amyloid (A), the major constituent of the Alzheimer's (AD) brain on lipid metabolism was investigated in cultured nerve cells and in a fetal rat brain model. Differentiated (NGF) and undifferentiated PC12 cells or primary cerebral cell cultures were incubated with [14C]acetate in the absence or presence of A1–40. Incorporation of label into lipid species was determined after lipid extraction and TLC separation. Phosphatidylcholine (PC) and phosphatidylserine (PS) synthesis was increased by A1–40, in a dose dependent manner, an effect which was more pronounced in differentiated PC12 cells. A significant proportion of radioactivity (5–6%) was released into the medium with a radioactivity distribution similar to that of the cellular lipids. Cholesterol and PC were the highest labeled medium lipids. Increasing A1–40 concentration up to 0.1 g/ml in cerebral cells but not in PC12 cells, caused a relative increase (1.5 fold) in release of PS, while that of PE decreased. Stimulation of PS release may possibly be associated with apoptotic cell death. A1–40 peptide (5 g) was administered intraperitonealy into rat fetuses (18 days gestation) along with [14C]acetate (2Ci/fetus). After 24 h, the maternal-fetal blood supply was occluded for 20 min (ischemia) followed by 15 min reperfusion. Fetuses were killed and liver and brain tissue subjected to lipid extraction and radioactivity determination after TLC. A1–40 peptide increased synthesis of different classes of lipids up to 20–40% in brain tissue compared to controls. Labeling of liver lipids was decreased by A1–40 by 20–30%. A general decrease in synthesis of lipids was observed after ischemia/reperfusion. Our data suggest that A1–40 peptide regulates normal lipid biosynthesis but under ischemia it compromises it. The latter finding may confirm the oxidative stress etiology in AD and suggests that A1–40 modulation of lipid metabolism may have Alzheimer's pathological relevance, particularly at high peptide concentrations.  相似文献   
116.
将GFPmut2质粒中的gfp基因 (编码绿色荧光蛋白)克隆到载体pVK100中,构建成重组质粒pVK1001.将pVK1001通过电转化方法导入到联合固氮菌巴西固氮螺菌Yu62中,获得GFP标记的巴西固氮螺菌Yu62菌株.用标记菌株接种限菌培养条件下生长的玉米(农大3318)幼苗,在接种后8 d、12 d,用激光共聚焦扫描显微镜进行观测,结果表明巴西固氮螺菌Yu62菌株能定植于玉米根部皮层的薄壁细胞间隙.用扫描电镜和超薄切片电镜观察表明,大多数细菌主要定植于根表,少数菌可进入玉米根组织内.  相似文献   
117.
Hematopoietic stem cells require a unique microenvironment in order to sustain blood cell formation1; the bone marrow (BM) is a complex three-dimensional (3D) tissue wherein hematopoiesis is regulated by spatially organized cellular microenvironments termed niches2-4. The organization of the BM niches is critical for the function or dysfunction of normal or malignant BM5. Therefore a better understanding of the in vivo microenvironment using an ex vivo mimicry would help us elucidate the molecular, cellular and microenvironmental determinants of leukemogenesis6.Currently, hematopoietic cells are cultured in vitro in two-dimensional (2D) tissue culture flasks/well-plates7 requiring either co-culture with allogenic or xenogenic stromal cells or addition of exogenous cytokines8. These conditions are artificial and differ from the in vivo microenvironment in that they lack the 3D cellular niches and expose the cells to abnormally high cytokine concentrations which can result in differentiation and loss of pluripotency9,10.Herein, we present a novel 3D bone marrow culture system that simulates the in vivo 3D growth environment and supports multilineage hematopoiesis in the absence of exogenous growth factors. The highly porous scaffold used in this system made of polyurethane (PU), facilitates high-density cell growth across a higher specific surface area than the conventional monolayer culture in 2D11. Our work has indicated that this model supported the growth of human cord blood (CB) mononuclear cells (MNC)12 and primary leukemic cells in the absence of exogenous cytokines. This novel 3D mimicry provides a viable platform for the development of a human experimental model to study hematopoiesis and to explore novel treatments for leukemia.  相似文献   
118.
Wound healing is a complicated, multistep process involving many cell types, growth factors and compounds1-3. Because of this complexity, wound healing studies are most comprehensive when carried out in vivo. There are many in vivo models available to study acute wound healing, including incisional, excisional, dead space, and burns. Dead space models are artificial, porous implants which are used to study tissue formation and the effects of substances on the wound. Some of the commonly used dead space models include polyvinyl alcohol (PVA) sponges, steel wire mesh cylinders, expanded polytetrafluoroethylene (ePTFE) material, and the Cellstick1,2.Each dead space model has its own limitations based on its material''s composition and implantation methods. The steel wire mesh cylinder model has a lag phase of infiltration after implantation and requires a long amount of time before granulation tissue formation begins1. Later stages of wound healing are best analyzed using the ePTFE model1,4. The Cellstick is a cellulose sponge inside a silicon tube model which is typically used for studying human surgery wounds and wound fluid2. The PVA sponge is limited to acute studies because with time it begins to provoke a foreign body response which causes a giant cell reaction in the animal5. Unlike other materials, PVA sponges are easy to insert and remove, made of inert and non-biodegradable materials and yet are soft enough to be sectioned for histological analysis2,5.In wound healing the PVA sponge is very useful for analyzing granulation tissue formation, collagen deposition, wound fluid composition, and the effects of substances on the healing process1,2,5. In addition to its use in studying a wide array of attributes of wound healing, the PVA sponge has also been used in many other types of studies. It has been utilized to investigate tumor angiogenesis, drug delivery and stem cell survival and engraftment1,2,6,7. With its great alterability, prior extensive use, and reproducible results, the PVA sponge is an ideal model for many studies1,2.Here, we will describe the preparation, implantation and retrieval of PVA sponge disks (Figure 1) in a mouse model of wound healing.  相似文献   
119.
《Autophagy》2013,9(2):213-221
Supplementation of branched chain amino acids, especially leucine, is critical to improve malnutrition by regulating protein synthesis and degradation. Emerging evidence has linked leucine deprivation induced protein breakdown to autophagy. In this study, we aimed to establish a cell-free assay recapitulating leucine-mediated autophagy in vitro and dissect its biochemical requirement. We found that in a cell-free assay, membrane association of Barkor/Atg14(L), a specific autophagosome-binding protein, is suppressed by cytosol from nutrient-rich medium and such suppression is released by nutrient deprivation. We also showed that rapamycin could efficiently reverse the suppression of nutrient rich cytosol, suggesting an essential role of mTORC1 in autophagy inhibition in this cell-free system. Furthermore, we demonstrated that leucine supplementation in the cultured cells blocks Barkor puncta formation and autophagy activity. Hence, we establish a novel cell-free assay recapitulating leucine-mediated autophagy inhibition in an mTORC1-dependent manner; this assay will help us to dissect the regulation of amino acids in autophagy and related human metabolic diseases.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号