首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
  26篇
  2020年   1篇
  2018年   3篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2008年   3篇
  2007年   1篇
  2004年   2篇
  2003年   1篇
  1991年   1篇
  1979年   1篇
排序方式: 共有26条查询结果,搜索用时 0 毫秒
11.
This article discusses the work ofGeorge Udny Yule in relation to theevolutionary synthesis and thebiometric-Mendelian debate. It has generallybeen claimed that (i.) in 1902, Yule put forththe first account showing that the competingbiometric and Mendelian programs could besynthesized. Furthermore, (ii.) the scientificfigures who should have been most interested inthis thesis (the biometricians W. F. RaphaelWeldon and Karl Pearson, and the MendelianWilliam Bateson) were too blinded by personalanimosity towards each other to appreciateYule's proposal. This essay provides adetailed account of (i.), maintaining thatYule's 1902 proposal is better understood as areduction, not a synthesis of the two programs.The results of this analysis are then used toevaluate (ii.), where I will instead argue thatBateson and the biometricians had good reasonsto avoid endorsing Yule's account.  相似文献   
12.
Many recent studies on invertebrates have shown how morphology not always captures the true diversity of taxa, with cryptic speciation often being discussed in this context. Here, we show how diversification patterns can be very different in two clades of closely related earthworms in the genus Hormogaster stressing the risk of using nonspecific substitution rate values across taxa. On the one hand, the Hormogaster elisae species complex, endemic to the central Iberian Peninsula, shows morphological stasis. On the other hand, a clade of Hormogaster from the NE Iberian Peninsula shows an enormous morphological variability, with 15 described morphospecies. The H. elisae complex, however, evolves faster genetically, and this could be explained by the harsher environmental conditions to which it is confined—as detected in this study, that is, sandier and slightly poorer soils with lower pH values than those of the other species in the family. These extreme conditions could be at the same time limiting morphological evolution and thus be responsible for the observed morphological stasis in this clade. Contrarily, Hormogaster species from the NE Iberian Peninsula, although still inhabiting harsher milieu than other earthworm groups, have had the opportunity to evolve into a greater morphological disparity. An attempt to delimit species within this group following the recently proposed general mixed Yule‐coalescent method showed a higher number of entities than expected under the morphospecies concept, most probably due to the low vagility of these animals, which considerably limits gene flow between distant conspecific populations, but also because of the decoupling between morphological and genetic evolution in the H. elisae complex.  相似文献   
13.
The stationary birth-only, or Yule-Furry, process for rooted binary trees has been analysed with a view to developing explicit expressions for two fundamental statistical distributions: the probability that a randomly selected leaf is preceded by N nodes, or “ancestors”, and the probability that two randomly selected leaves are separated by N nodes. For continuous-time Yule processes, the first of these distributions is presented in closed analytical form as a function of time, with time being measured with respect to the moment of “birth” of the common ancestor (which is essentially inaccessible to phylogenetic analysis), or with respect to the instant at which the first bifurcation occurred.The second distribution is shown to follow in an iterative manner from a hierarchy of second-order ordinary differential equations.For Yule trees of a given number n of tips, expressions have been derived for the mean and variance for each of these distributions as functions of n, as well as for the distributions themselves.In addition, it is shown how the methods developed to obtain these distributions can be employed to find, with minor effort, expressions for the expectation values of two statistics on Yule trees, the Sackin index (sum over all root-to-leaf distances), and the sum over all leaf-to-leaf distances.  相似文献   
14.
The Yule model is a widely used speciation model in evolutionary biology. Despite its simplicity many aspects of the Yule model have not been explored mathematically. In this paper, we formalise two analytic approaches for obtaining probability densities of individual branch lengths of phylogenetic trees generated by the Yule model. These methods are flexible and permit various aspects of the trees produced by Yule models to be investigated. One of our methods is applicable to a broader class of evolutionary processes, namely the Bellman-Harris models. Our methods have many practical applications including biodiversity and conservation related problems. In this setting the methods can be used to characterise the expected rate of biodiversity loss for Yule trees, as well as the expected gain of including the phylogeny in conservation management. We briefly explore these applications.  相似文献   
15.
Morphological and molecular analysis of 15 Philippine populations of eggplant fruit and shoot borer (EFSB), Leucinodes orbonalis Guenée were conducted to determine if these populations are constituted singly by L. orbonalis or by different species and to assess the level of variability among them. Morphometric analysis of five genital traits of 850 male adult EFSB from field populations and analysis of the COI gene sequence of 879 F1 EFSB larvae from 15 main eggplant-producing provinces identified all individuals as belonging to L. orbonalis. Principal Component Analysis of five morphometric genital characters revealed high similarity among the EFSB populations regardless of geographic location. Thirteen (13) sequence variants (haplotypes) were identified, with one haplotype predominant and widespread throughout the country. The remaining haplotypes occurred rarely and differed from the widespread haplotype by one mutation. Overall, the EFSB populations from Philippines exhibited low nucleotide and haplotype diversity, indicating low genetic diversity. Topologies from a maximum likelihood tree indicate all thirteen haplotypes cluster in a single clade with EFSB populations from India and other South-East Asian countries. Further analysis with the Generalized Mixed Yule Coalescent (GMYC) method classified the different haplotypes into a single GMYC entity. Combined with morphometric analysis, differences between haplotypes are not suggestive of any subspecies. Negative values of Tajima's D and Fu's Fs tests combined with the phylogenetic analysis and overall low genetic diversity of Philippine populations support the hypothesis that EFSB is not endemic but introduced to the Philippines.  相似文献   
16.
Over the past decade, molecular approaches to species delimitation have seen rapid development. However, species delimitation based on a single locus, for example, DNA barcodes, can lead to inaccurate results in cases of recent speciation and incomplete lineage sorting. Here, we compare the performance of Automatic Barcode Gap Discovery (ABGD), Bayesian Poisson tree processes (PTP), networks, generalized mixed Yule coalescent (GMYC) and Bayesian phylogenetics and phylogeography (BPP) models to delineate cryptic species previously detected by DNA barcodes within Tanytarsus (Diptera: Chironomidae) non‐biting midges. We compare the results from analyses of one mitochondrial (cytochrome c oxidase subunit I [COI]) and three nuclear (alanyl‐tRNA synthetase 1 [AATS1], carbamoyl phosphate synthetase 1 [CAD1] and 6‐phosphogluconate dehydrogenase [PGD]) protein‐coding genes. Our results show that species delimitation based on multiple nuclear DNA markers is largely concordant with morphological variation and delimitations using a single locus, for example, the COI barcode. However, ABGD, GMYC, PTP and network models led to conflicting results based on a single locus and delineate species differently than morphology. Results from BPP analyses on multiple loci correspond best with current morphological species concept. In total, 10 lineages of the Tanytarsus curticornis species complex were uncovered. Excluding a Norwegian population of Tanytarsus brundini which might have undergone recent hybridization, this suggests six hitherto unrecognized species new to science. Five distinct species are well supported in the Tanytarsus heusdensis species complex, including two species new to science.  相似文献   
17.
Species delimitation and identification can be arduous for taxa whose morphologic characters are easily confused, which can hamper global biodiversity assessments and pest species management. Exploratory methods of species delimitation that use DNA sequence as their primary information source to establish group membership and estimate putative species boundaries are useful approaches, complementary to traditional taxonomy. Termites of the genus Nasutitermes make interesting models for the application of such methods. They are dominant in Neotropical primary forests but also represent major agricultural and structural pests. Despite the prevalence, pivotal ecological role and economical impact of this group, the taxonomy of Nasutitermes species mainly depends on unreliable characters of soldier external morphology. Here, we generated robust species hypotheses for 79 Nasutitermes colonies sampled throughout French Guiana without any a priori knowledge of species affiliation. Sequence analysis of the mitochondrial cytochrome oxidase II gene was coupled with exploratory species‐delimitation tools, using the automatic barcode gap discovery method (ABGD) and a generalized mixed Yule‐coalescent model (GMYC) to propose primary species hypotheses (PSHs). PSHs were revaluated using phylogenetic analyses of two more loci (mitochondrial 16S rDNA and nuclear internal transcribed spacer 2) leading to 16 retained secondary species hypotheses (RSSH). Seven RSSHs, represented by 44/79 of the sampled colonies, were morphologically affiliated to species recognized as pests in the Neotropics, where they represent a real invasive pest potential in the context of growing ecosystem anthropization. Multigenic phylogenies based on combined alignments (1426–1784 bp) were also reconstructed to identify ancestral ecological niches and major‐pest lineages, revealing that Guyanese pest species do not form monophyletic groups.  相似文献   
18.
The shape of a phylogenetic tree is defined by the sequence of speciation events, represented by its branching points, and extinctions, represented by branch interruptions. In a neutral scenario of parapatry and isolation by distance, species tend to branch off the original population one after the other, leading to highly unbalanced trees. In this case the degree of imbalance, measured by the normalized Sackin index, grows linearly with species richness. Here we claim that moderate values of imbalance for trees with large number of species can occur if the geographic distribution involves more than one deme (allopatry) and speciation is parapatric within demes. The combined values of balance (normalized Sackin index) and species richness provide an estimate of how many demes were involved in the process if it happened in such neutral scenario. We also show that the spatial division in demes moderately slows down the diversification process, portraying a neutral mechanism for structuring the branch length distribution of phylogenetic trees.  相似文献   
19.
20.
Aquatic faunas in fresh, brackish, and salt waters are usually well defined and differ amongst these three habitats. Nonetheless, some animals are known to be euryhaline, namely present across wide salinity ranges. The wide tolerance of putative euryhaline species has, however been refuted in some cases by DNA taxonomy, which has uncovered cryptic diversity with narrow ecological niches. We aim to improve knowledge on the putative euryhalinism of microinvertebrates and test whether it might actually be a real phenomenon or if euryhaline species are mostly a consequence of our previous inability to identify cryptic species with narrow salinity ranges, as discovered in Brachionus plicatilis. Using morphological analyses and DNA taxonomy, we investigated the species reality and distribution of a putative euryhaline rotifer species, Testudinella clypeata, and evaluated whether cryptic species are ecologically and/or geographically segregated. Different DNA taxonomy approaches concurred in revealing the presence of seven cryptic species within the T. clypeata morphospecies, which, in contrast to what has been previously detected, are actually euryhaline. Moreover, differences in analysed morphological traits were not significantly different amongst cryptic species. This suggests that DNA taxonomy improves our estimates of the actual diversity of microscopic species, in contrast to the morphological approach. © 2013 The Linnean Society of London  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号