首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6579篇
  免费   637篇
  国内免费   269篇
  2024年   19篇
  2023年   191篇
  2022年   280篇
  2021年   422篇
  2020年   401篇
  2019年   615篇
  2018年   451篇
  2017年   255篇
  2016年   278篇
  2015年   410篇
  2014年   475篇
  2013年   611篇
  2012年   310篇
  2011年   357篇
  2010年   248篇
  2009年   320篇
  2008年   273篇
  2007年   276篇
  2006年   264篇
  2005年   205篇
  2004年   191篇
  2003年   165篇
  2002年   139篇
  2001年   83篇
  2000年   64篇
  1999年   51篇
  1998年   45篇
  1997年   27篇
  1996年   23篇
  1995年   12篇
  1994年   5篇
  1993年   8篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有7485条查询结果,搜索用时 15 毫秒
61.
为了探讨Rh type C glycoprotein (RHCG)对非小细胞肺癌(non-small cell lung cancer,NSCLC)细胞增殖的影响及可能的作用机制,本研究使用荧光定量PCR法检测12对NSCLC及癌旁组织样本中RHCG mRNA的表达水平及pcDNA3.1-RHCG质粒对A549细胞RHCG m RNA的表达;采用CCK-8法检测细胞增殖能力;运用PI染色法检测细胞周期;使用免疫印迹法检p-PI3K、PI3K、p-AKT以及AKT蛋白表达水平。本研究发现,与癌旁组织比较,NSCLC中RHCG m RNA表达水平明显降低。RHCG过表达能抑制NSCLC细胞系A549细胞增殖能力。此外,RHCG过表达使A549细胞周期G1/S期转化发生阻滞。本研究还发现,RHCG过表达可下调A549细胞p-PI3K/PI3K和p-AKT/AKT水平。本研究表明,RHCG抑制NSCLC细胞增殖的作用与其抑制PI3K/AKT信号通路有关。  相似文献   
62.
本研究旨在探讨抑瘤素M受体(OSMR)在慢性自身免疫性荨麻疹(CAU)发病机制中的作用。本研究分别检测30例CAU患者及30名健康受试者的皮肤组织中OSMR、JAK和STAT3的表达,研究显示OSMR、JAK和STAT3在CAU患者皮肤组织中高表达(p<0.05)。转染OSMR-siRNA可显著降低CAU模型小鼠血清炎症因子IL-1、IL-6和IFN-γ水平,而转染JAK/STAT3信号通路激动剂Tyr705则可显著升高炎症因子水平(p<0.05)。转染OSMR-siRNA可显著降低CAU小鼠瘙痒次数、瘙痒时间和嗜酸性粒细胞计数,而转染Tyr705则可显著升高CAU小鼠瘙痒次数、瘙痒时间和嗜酸性粒细胞计数(p<0.05)。转染OSMR-siRNA促进了CAU小鼠上皮细胞的增殖能力,并抑制了细胞凋亡(p<0.05)。而转染Tyr705则抑制了CAU小鼠上皮细胞的增殖能力,并促进了细胞凋亡(p<0.05)。转染OSMR-siRNA下调了上皮细胞中OSMR、JAK和STAT3的表达,而转染Tyr705则上调了OSMR、JAK和STAT3的表达(p<0.05)。总之,本研究表明OSMR基因在CAU患者皮肤组织中高表达。OSMR基因沉默可通过抑制JAK/STAT3信号通路来抑制炎症因子表达及嗜酸性粒细胞数量,促进上皮细胞增殖并抑制细胞凋亡。  相似文献   
63.
该文探讨了羽扇豆醇(Lupeol)对人结肠癌HCT116和SW620细胞增殖的影响及相关作用机制。使用不同浓度的Lupeol处理HCT116和SW620细胞后,用MTT法检测细胞活性,CCK8法检测细胞增殖能力,平板克隆实验检测细胞克隆形成能力,流式细胞术检测细胞周期和细胞凋亡,(quantitative real-time PCR,qPCR)和Western blot检测相应mRNA和蛋白表达水平,免疫荧光检测β-Catenin蛋白细胞内分布情况。通过构建shRNA敲低两种结肠癌细胞中RhoA,进一步研究Lupeol影响细胞增殖的分子机制。结果显示,Lupeol处理后,HCT116和SW620细胞增殖能力明显下降,克隆形成能力受到抑制,细胞周期阻滞于G0/G1期,细胞内RhoA、ROCK1、β-Catenin、Cyclin D1 mRNA和蛋白表达水平均显著下降,β-Catenin蛋白胞质和胞膜上分布减少。敲低RhoA后抑制了细胞增殖,同时使得RhoA-ROCK1-β-Catenin信号通路蛋白受到抑制,β-Catenin蛋白胞质和胞膜上分布减少。综上所述,Lupeol可通过抑制RhoA-ROCK1信号通路,抑制β-Catenin蛋白表达,进而抑制HCT116和SW620细胞增殖,Lupeol有望成为临床结肠癌治疗的新药物。  相似文献   
64.
The interest in biodiesel production from oil-bearing seeds rather than soybean necessitates the scientific validation of other good quality protein sources that could substitute soybean meal in animal diets, particularly, broiler chickens where soybean meal constitutes a large portion of their diet. Therefore, the present study was conducted to investigate the effect of sun-dried Azolla leaf meal (ALM) as an unconventional dietary protein source in broiler chicken diet on growth performance, meat quality, skeletal muscle cell growth and protein synthesis through regulation of ribosomal protein S6 kinase (p70S6 kinase α). A total of 120 male Ross 308 broiler chicks were randomly allocated to three dietary treatments. Each treatment had four cages (i.e. replicates) with 10 birds/cage. The control group was fed with a corn–soy-based diet, the AZ5 group was supplemented with 5% ALM and the AZ10 group was supplemented with 10% ALM for 37 days. A 5-day trial was also conducted to measure the apparent nutrient digestibility. Growth performance parameters were measured weekly. At the end of the experiment, 12 birds from each group (3/cage) were euthanized and used for samplings. Inclusion of ALM tended to improve BW gain (P = 0.06) and increased feed intake (P < 0.01). Additionally, ALM decreased the percentage of breast meat cooking loss linearly (P < 0.01). In addition, ALM at a dose of 5% increased the production of propionate in the cecum (P = 0.01). Activation of breast muscle p70S6 kinase was higher when ALM was included in a dose-dependent manner (P < 0.01). The inclusion of ALM increased breast meat redness (P < 0.01); however, the lightness was within the normal range in all groups. Findings from our study suggest that ALM could be included in a broiler chicken diet up to 5% without any major negative effect on meat quality or performance, and it regulates muscle protein synthesis through activation of mammalian target of rapamycin/6S kinase signaling.  相似文献   
65.
The ER‐bound kinase/endoribonuclease (RNase), inositol‐requiring enzyme‐1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1’s one known, specific RNA target, X box‐binding protein‐1 (XBP1) or the RNA substrates of IRE1‐dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide‐derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross‐talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1’s RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3) 5‐phosphatase‐2 (INPPL1) is a direct target of miR‐2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3/PIP2 ratio and anabolic mTOR signaling by the IRE1‐induced miR‐2137 demonstrates how the ER can provide a critical input into cell growth decisions.  相似文献   
66.
The generation of variation is paramount for the action of natural selection. Although biologists are now moving beyond the idea that random mutation provides the sole source of variation for adaptive evolution, we still assume that variation occurs randomly. In this review, we discuss an alternative view for how phenotypic plasticity, which has become well accepted as a source of phenotypic variation within evolutionary biology, can generate nonrandom variation. Although phenotypic plasticity is often defined as a property of a genotype, we argue that it needs to be considered more explicitly as a property of developmental systems involving more than the genotype. We provide examples of where plasticity could be initiating developmental bias, either through direct active responses to similar stimuli across populations or as the result of programmed variation within developmental systems. Such biased variation can echo past adaptations that reflect the evolutionary history of a lineage but can also serve to initiate evolution when environments change. Such adaptive programs can remain latent for millions of years and allow development to harbor an array of complex adaptations that can initiate new bouts of evolution. Specifically, we address how ideas such as the flexible stem hypothesis and cryptic genetic variation overlap, how modularity among traits can direct the outcomes of plasticity, and how the structure of developmental signaling pathways is limited to a few outcomes. We highlight key questions throughout and conclude by providing suggestions for future research that can address how plasticity initiates and harbors developmental bias.  相似文献   
67.
Musashi comprises an evolutionarily conserved family of RNA‐binding proteins (RBP) that regulate cell fate decisions during embryonic development and play key roles in the maintenance of self‐renewal and differentiation of stem cells and adult tissues. More recently, several studies have shown that any dysregulation of MSI1 and MSI2 can lead to cellular dysfunctions promoting tissue instability and tumorigenesis. Moreover, several reports have characterized many molecular interactions between members of the Musashi family with ligands and receptors of the signaling pathways responsible for controlling normal embryonic development: Notch, Transforming Growth Factor Beta (TGF‐β), Wingless (Wnt) and Hedgehog Signaling (Hh); all of which, when altered, are strongly associated with cancer onset and progression, especially in pediatric tumors. In this context, the present review aims to compile possible cross‐talks between Musashi proteins and members of the above cited molecular pathways for which dysregulation plays important roles during carcinogenesis and may be modulated by these RBP.  相似文献   
68.
69.
Tissue homeostasis is controlled by the differentiated progeny of residential progenitors (stem cells). Adult stem cells constantly adjust their proliferation/differentiation rates to respond to tissue damage and stresses. However, how differentiated cells maintain tissue homeostasis remains unclear. Here, we find that heparan sulfate (HS), a class of glycosaminoglycan (GAG) chains, protects differentiated cells from loss to maintain intestinal homeostasis. HS depletion in enterocytes (ECs) leads to intestinal homeostasis disruption, with accumulation of intestinal stem cell (ISC)‐like cells and mis‐differentiated progeny. HS‐deficient ECs are prone to cell death/stress and induced cytokine and epidermal growth factor (EGF) expression, which, in turn, promote ISC proliferation and differentiation. Interestingly, HS depletion in ECs results in the inactivation of decapentaplegic (Dpp) signaling. Moreover, ectopic Dpp signaling completely rescued the defects caused by HS depletion. Together, our data demonstrate that HS is required for Dpp signal activation in ECs, thereby protecting ECs from ablation to maintain midgut homeostasis. Our data shed light into the regulatory mechanisms of how differentiated cells contribute to tissue homeostasis maintenance.  相似文献   
70.
Despite the improvement in acute myeloid leukemia (AML) treatments, most patients had a poor prognosis and suffered from chemoresistance and disease relapse. Therefore, there is an urgent need for elucidation of mechanism(s) underlying drug resistance in AML. In the present study, we found that AML cells showed less susceptibility to adriamycin (ADR) in the presence of hypoxia, while inhibition of hypoxia‐inducible factor 1α (HIF‐1α) by CdCl2 can make AML cells re‐susceptibile to ADR even under hypoxia. Moreover, HIF‐1α is overexpressed and plays an important role in ADR‐resistance maintenance in resistant AML cells. We further found hypoxia or induction of HIF‐1α can significantly upregulate yes‐associated protein (YAP) expression in AML cells, and resistant cells express a high level of YAP. Finally, we found that YAP may not only enhance HIF‐1α stability but also promote HIF‐1α's activity on the target gene pyruvate kinase M2. In conclusion, our data indicate that HIF‐1α or YAP may represent a therapeutic target for overcoming resistance toward adriamycin‐based chemotherapy in AML.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号