首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   35篇
  国内免费   12篇
  501篇
  2023年   7篇
  2022年   7篇
  2021年   9篇
  2020年   8篇
  2019年   9篇
  2018年   14篇
  2017年   4篇
  2016年   10篇
  2015年   6篇
  2014年   15篇
  2013年   19篇
  2012年   5篇
  2011年   14篇
  2010年   6篇
  2009年   27篇
  2008年   17篇
  2007年   25篇
  2006年   22篇
  2005年   16篇
  2004年   21篇
  2003年   20篇
  2002年   9篇
  2001年   10篇
  2000年   19篇
  1999年   21篇
  1998年   12篇
  1997年   15篇
  1996年   9篇
  1995年   8篇
  1994年   12篇
  1993年   17篇
  1992年   16篇
  1991年   10篇
  1990年   10篇
  1989年   6篇
  1988年   8篇
  1987年   4篇
  1986年   10篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有501条查询结果,搜索用时 0 毫秒
21.
We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity (kL) of upper branches was positively correlated with maximum rates of net CO2 assimilation per unit leaf area (Aarea) and stomatal conductance (gs) across 20 species of canopy trees. Maximum kL showed stronger correlation with Aarea than initial kL suggesting that allocation to photosynthetic potential is proportional to maximum water transport capacity. Terminal branch kL was negatively correlated with Aarea/gs and positively correlated with photosynthesis per unit N, indicating a trade-off of efficient use of water against efficient use of N in photosynthesis as water transport efficiency varied. Specific hydraulic conductivity calculated from xylem anatomical characteristics (ktheoretical) was positively related to Aarea and kL, consistent with relationships among physiological measurements. Branch wood density was negatively correlated with wood water storage at saturation, kL, Aarea, net CO2 assimilation per unit leaf mass (Amass), and minimum leaf water potential measured on covered leaves, suggesting that wood density constrains physiological function to specific operating ranges. Kinetic and static indices of branch water transport capacity thus exhibit considerable co-ordination with allocation to potential carbon gain. Our results indicate that understanding tree hydraulic architecture provides added insights to comparisons of leaf level measurements among species, and links photosynthetic allocation patterns with branch hydraulic processes.  相似文献   
22.
Fine structure of plasmodesmata in mature leaves of sugarcane   总被引:1,自引:0,他引:1  
The fine structure of plasmodesmata in vascular bundles and contiguous tissues of mature leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) was studied with the transmission electron microscope. Tissues were fixed in glutaraldehyde, with and without the addition of tannic acid, and postfixed in OsO4. The results indicate that the fine structure of plasmodesmata in sugarcane differs among various cell combinations in a cell-specific manner, but that three basic structural variations can be recognized among plasmodesmata in the mature leaf: 1) Plasmodesmata between mesophyll cells. These plasmodesmata possess amorphous, electron-opaque structures, termed sphincters, that extend from plasma membrane to desmotubule near the orifices of the plasmodesmata. The cytoplasmic sleeve is filled by the sphincters where they occur; elsewhere it is open and entirely free of particulate or spokelike components. The desmotubule is tightly constricted and has no lumen within the sphincters, but between the sphincters it is a convoluted tubule with an open lumen. 2) Plasmodesmata that traverse the walls of chlorenchymatous bundle-sheath cells and mestome-sheath cells. In addition to the presence of sphincters, these plasmodesmata are modified by the presence of suberin lamellae in the walls. Although the plasmodesmata are quite narrow and the lumens of the desmotubules are constricted where they traverse the suberin lamellae, the cytoplasmic sleeves are still discernible and appear to contain substructural components there. 3) Plasmodesmata between parenchymatous cells of the vascular bundles. These plasmodesmata strongly resemble those found in the roots of Azolla, in that their desmotubules are closed for their entire length and their cytoplasmic sleeves appear to contain substructural components for their entire length. The structural variations exhibited by the plasmodesmata of the sugarcane leaf are compared with those proposed for a widely-adopted model of plasmodesmatal structure.Abbreviation ER endoplasmic reticulum This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   
23.
南亚热带地区人工纯林面积大, 但是结构简单, 对气候变化响应敏感。在区域气候干旱化的背景下, 造林树种的生理生态策略及其对季节性干旱的响应亟待研究。该研究选择南亚热带地区10种造林树种(包括6种乡土种和4种外来种), 测定这些树种的平均生长速率、水力学性状以及经济学性状, 分析性状与生长速率之间的相关关系, 并比较水力安全边际和气孔安全边际的种间差异。结果发现: (1)造林树种的生长速率与木质部导水率显著正相关, 但与木材密度、比叶面积以及水力安全性指标无显著相关性。(2)造林树种的水分传导效率性和安全性之间没有权衡关系, 外来树种Acacia crassicarpaEucalyptus grandis × urophylla同时具有较高的木质部导水率和较强的抗栓塞能力。(3)造林树种的水力安全边际和气孔安全边际的种间差异显著, 大叶相思(Acacia auriculiformis)、红锥(Castanopsis hystrix)、壳菜果(Mytilaria laosensis)和阴香(Cinnamomum burmannii)在干季发生水力失败的风险较高。建议南亚热带人工林的生态监测指标体系中应包括树木水力学性状, 进而为人工林的可持续经营管理提供重要参考。  相似文献   
24.
25.
Water deficits and hydraulic limits to leaf water supply   总被引:30,自引:1,他引:29  
Many aspects of plant water use -- particularly in response to soil drought -- may have as their basis the alteration of hydraulic conductance from soil to canopy. The regulation of plant water potential (Psi) by stomatal control and leaf area adjustment may be necessary to maximize water uptake on the one hand, while avoiding loss of hydraulic contact with the soil water on the other. Modelling the changes in hydraulic conductance with pressure gradients in the continuum allows the prediction of water use as a function of soil environment and plant architectural and xylem traits. Large differences in water use between species can be attributed in part to differences in their 'hydraulic equipment' that is presumably optimized for drawing water from a particular temporal and spatial niche in the soil environment. A number of studies have identified hydraulic limits as the cause of partial or complete foliar dieback in response to drought. The interactions between root:shoot ratio, rooting depth, xylem properties, and soil properties in influencing the limits to canopy water supply can be used to predict which combinations should optimize water use in a given circumstance. The hydraulic approach can improve our understanding of the coupling of canopy processes to soil environment, and the adaptive significance of stomatal behaviour.  相似文献   
26.
Xylem of lime trees (Tilia spp.) with wound reactions was structurally investigated by scanning (SEM) and transmission electron microscopy (TEM) as well as chemically analyzed by direct thermal desorption-gas chromatography-mass spectrometry (DTD-GC-MS). Wound reactions in the outer xylem lead to distinct discolorations around the wound. Within a 4-week response no fungal infection occurred in discoloured xylem. At the fine structural level, wound reactions become primarily visible as the secretion of dark-staining substances from parenchyma cells into lumens of vessels and fibres. With increasing reaction time vessels aggregate large amounts of secretion products, whereas in fibres wall-associated linings are formed and the inner secondary wall appears incrusted. After 2-3 months a narrow, greenish-brown boundary developed at the transition between the discoloured outer and the unchanged inner xylem. This green-brown boundary layer remained non-infected also in older wounds. DTD-GC-MS analyses revealed that the sesquiterpene Hydroxycalamenene represents a key substance of wound reactions in non-infected lime trees. Other substances such as fatty acids or their esters and coniferyl aldehydes or their derivatives were also found. TEM investigations of the samples after DTD-GC-MS showed less pronounced cell wall-attached linings in fibres as well as reduced incrustation of inner secondary walls. The massive deposits in the vessel lumens remained unchanged. The role of these wound reaction products and their ways of synthesis are discussed.  相似文献   
27.
Gao M  Showalter AM 《Planta》2000,210(6):865-874
 Arabinogalactan-proteins (AGPs) are highly glycosylated cell surface proteins that are thought to function in plant growth and development. The developmentally regulated expression of LeAGP-1, a novel and major AGP in tomato, was examined in different organs and tissues of tomato (Lycopersicon esculentum Mill. cv. UC82B) plants with an anti-peptide antibody (i.e. the PAP antibody) directed specifically against the lysine-rich subdomain of the LeAGP-1 core protein. During cell differentiation in tomato plants, LeAGP-1 was associated with cell wall thickening and lignification of particular cell types. Specifically, LeAGP-1 was detected in secondary wall thickenings of maturing metaxylem and secondary xylem tracheary elements in roots and stems, and in thickened cell walls of phloem sieve elements. However, LeAGP-1 was also present in thin-walled, cortical parenchyma cells of seedling roots as well as thick-walled collenchyma cells in young stems, both of which are not lignified. Based on these observed patterns, possible roles for LeAGP-1 in plant growth and development are discussed. Received: 17 August 1999 / Accepted: 7 October 1999  相似文献   
28.
1. An air-injection method was used to study loss of water transport capacity caused by xylem cavitation in roots and branches of Pinus edulis (Colorado Pinyon) and Juniperus osteosperma (Utah Juniper). These two species characterize the Pinyon–Juniper communities of the high deserts of the western United States. Juniperus osteosperma can grow in drier sites than P. edulis and is considered the more drought tolerant.
2. Juniperus osteosperma was more resistant to xylem cavitation than P. edulis in both branches and roots. Within a species, branches were more resistant to cavitation than roots for P. edulis but no difference was seen between the two organs for J. osteosperma . There was also no difference between juveniles and adults in J. osteosperma ; this comparison was not made for P. edulis .
3. Tracheid diameter was positively correlated with xylem cavitation pressure across roots and stems of both species. This relation suggests a trade-off between xylem conductance and resistance to xylem cavitation in these species.
4. During summer drought, P. edulis maintained higher predawn xylem pressures and showed much greater stomatal restriction of transpiration, consistent with its greater vulnerability to cavitation, than J. osteosperma .
5. These results suggest that the relative drought tolerance of P. edulis and J. osteosperma results in part from difference in their vulnerability to xylem cavitation.  相似文献   
29.
Loopstra CA  Puryear JD  No EG 《Planta》2000,210(4):686-689
 An arabinogalactan-protein (AGP) was purified from differentiating xylem of loblolly pine (Pinus taeda L.) and the N-terminal sequence used to identify a cDNA clone. The protein, PtaAGP3, was not coded for by any previously identified AGP-like genes. Moreover, PtaAGP3 was abundantly and preferentially expressed in differentiating xylem. The encoded protein contains four domains, a signal peptide, a cleaved hydrophilic region, a region rich in serine, alanine, and proline/hydroxyproline, and a hydrophobic C-terminus. It is postulated to contain a GPI (glycosylphosphatidylinositol) anchor site. If the protein is cleaved at the putative GPI anchor site, as has been observed in other classical AGPs, all but the Ser-Ala-Pro/Hyp-rich domain may be missing from the mature protein. Xylem-specific AGPs are hypothesized to be involved in xylem development. Received: 29 July 1999 / Accepted: 19 August 1999  相似文献   
30.
Abstract An artificial osmotic cell has been constructed using reverse osmosis membranes. The cell consisted of a thin film of an osmotic solution (thickness: 100 to 200 μm) containing a non-permeating solute and was bounded between the membrane and the front plate of a pressure transducer which continuously recorded cell turgor. The membrane was supported by metal grids to withstand positive and negative pressures (P). At maximum, negative pressures of up to –0.7 MPa (absolute) could be created within the film on short-term and pressures of up to –0.3 MPa could be maintained without cavitation for several hours. As with living plant cells, the application of osmotic solutions of a non-permeating solute resulted in monophasic relaxations of turgor pressure from which the hydraulic conductivity of the membrane (Lp) and the elastic modulus of the cell (?) could be estimated. The application of solutions with permeating solutes resulted in biphasic pressure relaxation curves (as for living cells) from which the permeability (Ps) and reflection (σs) coefficients could be evaluated for the given membrane. Lp, Ps, and σs were independent of P and did not change upon transition from the positive to the negative range of pressure. It is concluded that the artificial cell could be used to simulate certain transport properties of living cells and to study phenomena of negative pressure as they occur in the xylem and, perhaps, also in living cells of higher plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号