首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15091篇
  免费   1323篇
  国内免费   1408篇
  17822篇
  2024年   24篇
  2023年   287篇
  2022年   330篇
  2021年   467篇
  2020年   510篇
  2019年   598篇
  2018年   501篇
  2017年   570篇
  2016年   572篇
  2015年   619篇
  2014年   721篇
  2013年   911篇
  2012年   767篇
  2011年   716篇
  2010年   613篇
  2009年   726篇
  2008年   760篇
  2007年   866篇
  2006年   850篇
  2005年   795篇
  2004年   719篇
  2003年   577篇
  2002年   654篇
  2001年   512篇
  2000年   482篇
  1999年   358篇
  1998年   278篇
  1997年   281篇
  1996年   244篇
  1995年   196篇
  1994年   205篇
  1993年   181篇
  1992年   144篇
  1991年   126篇
  1990年   77篇
  1989年   86篇
  1988年   54篇
  1987年   54篇
  1986年   49篇
  1985年   54篇
  1984年   41篇
  1983年   34篇
  1982年   33篇
  1981年   36篇
  1980年   47篇
  1979年   28篇
  1978年   26篇
  1977年   14篇
  1976年   14篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Giant reed (Arundo donax L.) is a C3 perennial, warm‐season, rhizomatous grass of emerging interest for bioenergy and biomass derivatives production, and for phytoremediation. It only propagates vegetatively and very little genetic variation is found among ecotypes, basically precluding breeding efforts. With the objective to increase the genetic variation in this species, we developed and applied a mutagenesis protocol based on γ‐irradiation of in vitro cell cultures from which regenerants were obtained. Based on a radiosensitivity test, the irradiation dose reducing to 50% the number of regenerants per callus (RD50) was estimated at 35 Gy. A large mutagenic experiment was carried out by irradiating a total of 3120 calli with approx. 1×, 1.5× and 2× RD50. A total of 1004 regenerants from irradiated calli were hardened in pots and transplanted to the field. Initial phenotypic characterization of the collection showed correlated responses of biomass‐related quantitative traits to irradiation doses. Approx. 10% of field‐grown clones showed remarkable morphological aberrations including dwarfism, altered tillering, abnormal inflorescence, leaf variegation and others, which were tested for stability over generations. Clone lethality reached 0.4%. Our results show for the first time that physical mutagenesis can efficiently induce new genetic and phenotypic variation of agronomic and prospective industrial value in giant reed. The methodology and the plant materials described here may contribute to the domestication and the genetic improvement of this important biomass species.  相似文献   
122.
A leading hypothesis linking parasites to social evolution is that more genetically diverse social groups better resist parasites . Moreover, group diversity can encompass factors other than genetic variation that may also influence disease resistance. Here, we tested whether group diversity improved disease resistance in an ant species with natural variation in colony queen number. We formed experimental groups of workers and challenged them with the fungal parasite Metarhizium anisopliae . Workers originating from monogynous colonies (headed by a single queen and with low genetic diversity) had higher survival than workers originating from polygynous ones, both in uninfected groups and in groups challenged with M. anisopliae . However, an experimental increase of group diversity by mixing workers originating from monogynous colonies strongly increased the survival of workers challenged with M. anisopliae , whereas it tended to decrease their survival in absence of infection. This experiment suggests that group diversity, be it genetic or environmental, improves the mean resistance of group members to the fungal infection, probably through the sharing of physiological or behavioural defences.  相似文献   
123.
With an ecological-evolutionary perspective increasingly applied toward the conservation and management of endangered or exploited species, the genetic estimation of effective population size (Ne) has proliferated. Based on a comprehensive analysis of empirical literature from the past two decades, we asked: (i) how often do studies link Ne to the adult census population size (N)? (ii) To what extent is Ne correctly linked to N? (iii) How readily is uncertainty accounted for in both Ne and N when quantifying Ne/N ratios? and (iv) how frequently and to what degree might errors in the estimation of Ne or N affect inferences of Ne/N ratios? We found that only 20% of available Ne estimates (508 of 2617; 233 studies) explicitly attempted to link Ne and N; of these, only 31% (160 of 508) correctly linked Ne and N. Moreover, only 7% (41 of 508) of Ne/N ratios (correctly linked or not) reported confidence intervals for both Ne and N; for those cases where confidence intervals were reported for Ne only, 31% of Ne/N ratios overlapped with 1, of which more than half also reached below Ne/N = 0.01. Uncertainty in Ne/N ratios thus sometimes spanned at least two orders of magnitude. We conclude that the estimation of Ne/N ratios in natural populations could be significantly improved, discuss several options for doing so, and briefly outline some future research directions.  相似文献   
124.
Equine combined immunodeficiency disease (CID) is caused by homozygosity for an autosomal recessive gene. To identify linked markers for the disease, we studied a family segregating for the equine CID gene. A stallion and 19 of his CID-affected offspring were tested for marker segregation at 23 microsatellite DNA loci. His CID-affected offspring inherited only one of his two alleles at the HTG8 and HTG4 loci, namely HTG8–186 and HTG4–124 , respectively. Lod scores for linkage to the CID gene using a Θ of 0·01were 5·34 for HTG8 and 2·37 for HTG4. The apparent genotypes also suggested linkage disequilibrium between the HTG8–186 allele and the gene for CID. The gene for the DNA protein kinase catalytic subunit ( DNA-PK ) was recently suggested as a candidate gene for equine CID. A defect of this gene causes a disease in mice that is similar to equine CID. Therefore, we investigated whether this gene might be associated with the microsatellite markers. Analysis of a somatic cell hybrid panel demonstrated synteny of DNA-PK with HTG4 and HTG8 (Kentucky Synteny Group 3). Fluorescence in situ hybridization (FISH) studies demonstrated that DNA-PK is located on horse chromosome ECA9p12. This work supports the hypothesis of DNA-PK as the probable cause of equine CID.  相似文献   
125.
Genetic diversity at 13 equine microsatellite loci was compared in five endangered Spanish donkey breeds: Andaluza, Catalana, Mallorquina, Encartaciones and Zamorano-Leonesa. All of the equine microsatellites used in this study were amplified and were polymorphic in the domestic donkey breeds with the exception of HMS1, which was monomorphic, and ASB2, which failed to amplify. Allele number, frequency distributions and mean heterozygosities were very similar among the Spanish donkey breeds. The unbiased expected heterozygosity (HE) over all the populations varied between 0.637 and 0.684 in this study. The low GST value showed that only 3.6% of the diversity was between breeds (P < 0.01). Significant deviations from Hardy-Weinberg equilibrium were shown for a number of locus-population combinations, except HMS5 that showed agreement in all analysed populations. The cumulative exclusion probability (PE) was 0.999 in each breed, suggesting that the loci would be suitable for donkey parentage testing. The constructed dendrogram from the DA distance matrix showed little differentiation between Spanish breeds, but great differentiation between them and the Moroccan ass and also with the horse, used as an outgroup. These results confirm the potential use of equine microsatellite loci as a tool for genetic studies in domestic donkey populations, which could also be useful for conservation plans.  相似文献   
126.
Many scientists complain that the current funding situation is dire. Indeed, there has been an overall decline in support in funding for research from the National Institutes of Health and the National Science Foundation. Within the Drosophila field, some of us question how long this funding crunch will last as it demotivates principal investigators and perhaps more importantly affects the long-term career choice of many young scientists. Yet numerous very interesting biological processes and avenues remain to be investigated in Drosophila, and probing questions can be answered fast and efficiently in flies to reveal new biological phenomena. Moreover, Drosophila is an excellent model organism for studies that have translational impact for genetic disease and for other medical implications such as vector-borne illnesses. We would like to promote a better collaboration between Drosophila geneticists/biologists and human geneticists/bioinformaticians/clinicians, as it would benefit both fields and significantly impact the research on human diseases.  相似文献   
127.
Describing, understanding and predicting the spatial distribution of genetic diversity is a central issue in biological sciences. In river landscapes, it is generally predicted that neutral genetic diversity should increase downstream, but there have been few attempts to test and validate this assumption across taxonomic groups. Moreover, it is still unclear what are the evolutionary processes that may generate this apparent spatial pattern of diversity. Here, we quantitatively synthesized published results from diverse taxa living in river ecosystems, and we performed a meta‐analysis to show that a downstream increase in intraspecific genetic diversity (DIGD) actually constitutes a general spatial pattern of biodiversity that is repeatable across taxa. We further demonstrated that DIGD was stronger for strictly waterborne dispersing than for overland dispersing species. However, for a restricted data set focusing on fishes, there was no evidence that DIGD was related to particular species traits. We then searched for general processes underlying DIGD by simulating genetic data in dendritic‐like river systems. Simulations revealed that the three processes we considered (downstream‐biased dispersal, increase in habitat availability downstream and upstream‐directed colonization) might generate DIGD. Using random forest models, we identified from simulations a set of highly informative summary statistics allowing discriminating among the processes causing DIGD. Finally, combining these discriminant statistics and approximate Bayesian computations on a set of twelve empirical case studies, we hypothesized that DIGD were most likely due to the interaction of two of these three processes and that contrary to expectation, they were not solely caused by downstream‐biased dispersal.  相似文献   
128.
Abstract.— Adaptive phenotypic plasticity in chemical defense is thought to play a major role in plant-herbivore interactions. We investigated genetic variation for inducibility of defensive traits in wild radish plants and asked if the evolution of induction is constrained by costs of phenotypic plasticity. In a greenhouse experiment using paternal half-sibling families, we show additive genetic variation for plasticity in glucosinolate concentration. Genetic variation for glucosinolates was not detected in undamaged plants, but was significant following herbivory by a specialist herbivore, Pieris rapae . On average, damaged plants had 55% higher concentrations of glucosinolates compared to controls. In addition, we found significant narrow-sense heritabilities for leaf size, trichome number, flowering phenology, and lifetime fruit production. In a second experiment, we found evidence of genetic variation in induced plant resistance to P. rapae . Although overall there was little evidence for genetic correlations between the defensive and life-history traits we measured, we show that more plastic families had lower fitness than less plastic families in the absence of herbivory (i.e., evidence for genetic costs of plasticity). Thus, there is genetic variation for induction of defense in wild radish, and the evolution of inducibility may be constrained by costs of plasticity.  相似文献   
129.
利用27对SSR分子标记对新疆4个野杏群体遗传多样性和遗传结构进行分析,评价新疆野杏遗传多样性水平和分化程度,为新疆野杏合理保护与利用提供科学依据。结果显示:(1)27对SSR引物共检测到431个等位基因(Na),各位点平均等位基因数(Na)和多态性信息含量(PIC)分别为15.96和0.84;物种水平上Shannons信息指数(I)和期望杂合度(He)分别为2.21和0.78。(2)群体水平上等位基因数(Na)、有效等位基因(Ne)、Shannons信息指数(I)、期望杂合度(He)和观察杂合度(Ho)分别为10.98、5.85、1.92、0.79和0.55;其中新源县野杏群体遗传多样性最丰富,巩留县群体遗传多样性最低。(3)基于F统计量分析的遗传分化系数(Fst)为0.05,基因流(Nm)为5.26;分子方差分析显示新疆野杏群体大部分遗传变异来自群体内(95.4%),群体间的遗传变异仅占4.6%。(4)新疆野杏群体遗传距离为0.06~0.49,平均为0.24;遗传相似度为0.61~0.94,平均为0.80;遗传相似度的聚类分析和遗传距离的主坐标分析结果一致,均将供试4个群体划分为两组;Mantel检测显示,新疆野杏群体遗传距离与地理距离无显著相关(r=0.332,P=0.16)。研究表明,新疆野杏资源具有丰富的遗传多样性,群体遗传分化程度较低,群体间遗传距离较小,这与新疆野杏群体的大小和悠久的演化历史以及群体间频繁的基因交流相关。  相似文献   
130.
The two branches of the Kennedy pathways (CDP-choline and CDP-ethanolamine) are the predominant pathways responsible for the synthesis of the most abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine, respectively, in mammalian membranes. Recently, hereditary diseases associated with single gene mutations in the Kennedy pathways have been identified. Interestingly, genetic diseases within the same pathway vary greatly, ranging from muscular dystrophy to spastic paraplegia to a childhood blinding disorder to bone deformations. Indeed, different point mutations in the same gene (PCYT1; CCTα) result in at least three distinct diseases. In this review, we will summarize and review the genetic diseases associated with mutations in genes of the Kennedy pathway for phospholipid synthesis. These single-gene disorders provide insight, indeed direct genotype-phenotype relationships, into the biological functions of specific enzymes of the Kennedy pathway. We discuss potential mechanisms of how mutations within the same pathway can cause disparate disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号