首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1722篇
  免费   41篇
  国内免费   35篇
  2023年   13篇
  2022年   10篇
  2021年   18篇
  2020年   17篇
  2019年   18篇
  2018年   15篇
  2017年   15篇
  2016年   13篇
  2015年   31篇
  2014年   47篇
  2013年   70篇
  2012年   46篇
  2011年   56篇
  2010年   56篇
  2009年   51篇
  2008年   60篇
  2007年   101篇
  2006年   74篇
  2005年   58篇
  2004年   64篇
  2003年   73篇
  2002年   61篇
  2001年   72篇
  2000年   77篇
  1999年   50篇
  1998年   64篇
  1997年   56篇
  1996年   66篇
  1995年   52篇
  1994年   34篇
  1993年   35篇
  1992年   43篇
  1991年   34篇
  1990年   24篇
  1989年   22篇
  1988年   27篇
  1987年   11篇
  1986年   21篇
  1985年   13篇
  1984年   19篇
  1983年   8篇
  1982年   20篇
  1981年   11篇
  1980年   10篇
  1979年   14篇
  1978年   8篇
  1977年   8篇
  1976年   7篇
  1974年   5篇
  1973年   7篇
排序方式: 共有1798条查询结果,搜索用时 171 毫秒
131.
During Xenopus development, embryonic cells dramatically change their shape and position. Rho family small GTPases, such as RhoA, Rac, and Cdc42, play important roles in this process. These GTPases are generally activated by guanine nucleotide exchange factors (GEFs); however, the roles of RhoGEFs in Xenopus development have not yet been elucidated. We therefore searched for RhoGEF genes in our Xenopus EST database, and we identified several genes expressed during embryogenesis. Among them, we focused on one gene, designated xNET1. It is similar to mammalian NET1, a RhoA-specific GEF. An in vitro binding assay revealed that xNET1 bound to RhoA, but not to Rac or Cdc42. In addition, transient expression of xNET1 activated endogenous RhoA. These results indicated that xNET1 is a GEF for RhoA. Epitope-tagged xNET1 was localized mainly to the nucleus, and the localization was regulated by nuclear localization signals in the N-terminal region of xNET1. Overexpression of either wild-type or a mutant form of xNET1 severely inhibited gastrulation movements. We demonstrated that xNET1 was co-immunoprecipitated with the Dishevelled protein, which is an essential signaling component in the non-canonical Wnt pathway. This pathway has been shown to activate RhoA and regulate gastrulation movements. We propose that xNET1 or a similar RhoGEF may mediate Dishevelled signaling to RhoA in the Wnt pathway.  相似文献   
132.
During metamorphosis, the frog intestine goes through a dramatic shortening with extensive apoptosis and regeneration in the epithelial layer and connective tissue. Our aim was to study changes in the enteric nervous system represented by one inhibitory (vasoactive intestinal polypeptide; VIP) and one excitatory (substance P, neurokinin A; SP/NKA) nerve population and concomitant changes in neurotrophin receptor occurrence during this development in the gut of Xenopus laevis adults and tadpoles at different stages of metamorphosis (NF stages 57–66). Sections were incubated with antibodies against the neurotrophin Trk receptors and p75NTR, and the neurotransmitters VIP and SP/NKA. Trk-immunoreactive nerves increased dramatically but transiently in number during early metamorphic climax. Nerves immunoreactive for p75NTR were present throughout the gut, decreased in number in the middle intestine during climax, and increased in the large intestine during late metamorphosis. The percentage of VIP-immunoreactive nerves did not change during metamorphosis. SP/NKA-immunoreactive nerves were first apparent at NF stages 61–62 in the middle intestine and increased in the stomach and large intestine during metamorphosis. Endocrine cells expressing SP/NKA increased in number in stomach, proximal, and middle intestine during metamorphic climax. Thus, neurotrophin receptors are expressed transiently in neurons of the enteric nervous system during metamorphosis in Xenopus laevis and SP/NKA innervation is more abundant in the intestine of the postmetamorphic frog than in the tadpole.This study was supported by grants from the Swedish Research Council to S. Holmgren  相似文献   
133.
MAK-V/Hunk is a recently identified MARK/Par-1-related mammalian protein kinase. Although the precise function of this protein kinase is yet to be established, available data suggest its involvement in animals development and in the physiology of the nervous system. Here we report characterization of a cDNA encoding Xenopus laevis orthologue of MAK-V/Hunk protein kinase, xMAK-V. The in silico analysis also revealed MAK-V/Hunk orthologues in the fish Fugu rubripes and primitive chordate Ciona intestinalis but not in invertebrate species such as Drosophila melanogaster and Caenorhabditis elegans, suggesting that MAK-V/Hunk is a chordate-specific protein kinase. The expression of xmak-v in X. laevis embryos was analyzed using whole-mount in situ hybridization. Expression of xmak-v has been detected in all developmental stages studied including maternal expression in unfertilized eggs. The xmak-v mRNA has a predominant occurrence on the animal hemisphere of the egg, and this pattern of expression is sustained throughout cleavage and blastula stages. At the gastrula stage xmak-v expression is restricted to the ectoderm. In the later stage embryos xmak-v is expressed over the entire embryonic surface including the open neural plate at stage 15 and also in neural tube at stage 22. At tadpole stage xmak-v expression is strong in embryonic epidermis, nervous system and sensory organs, and is also obvious in perisomitic mesoderm and brachial arches.Edited by N. Satoh  相似文献   
134.
135.
We designed a screen to identify starfish oocyte proteins able to bind monomeric cyclin B by affinity chromatography on a cyclin B splice variant displaying low affinity for cdc2. We identified a 15kDa protein previously described as a cdk-binding protein [Biochim. Biophys. Acta Mol. Cell Res. 1589 (2002) 219-231]. Cybip is encoded by a single polymorphic gene and the native protein is matured by cleaving a signal peptide. We firmly establish the fact that it is a true cyclin B-binding protein, since the recombinant protein binds recombinant cyclin B in absence of any cdk. Finally, we show that the microinjection of GST-cybip, and of anti-cybip antibody, in maturing starfish oocytes, inhibits H1 kinase and MPF inactivation, and first polar body emission.  相似文献   
136.
137.
Progression of the cell cycle and control of apoptosis are tightly linked processes. It has been reported that manifestation of apoptosis requires cdc2 kinase activity yet the mechanism(s) of which is largely unclear. In an attempt to study the role of human MDM2 (HDM2) in interphase and mitosis, we employed the Xenopus cell-free system to study HDM2 protein stability. Interestingly, HDM2 is specifically cleaved in Xenopus mitotic extracts but not in the interphase extracts. We demonstrate that HDM2 cleavage is dependent on caspase-3 and that activation of cdc2 kinase results in caspase-3 activation in the Xenopus cell-free system. Furthermore, expression of cdc2 kinase in mammalian cells leads to activation of caspase-3 and apoptosis. Taken together, these data indicate that deregulation of cdc2 kinase activity can trigger apoptotic machinery that leads to caspase-3 activation and apoptosis.  相似文献   
138.
Results from previous studies using an inbred strain of Xenopus laevis have led to the proposition that metamorphosis includes the events by which the newly differentiating adult immune system, including T lymphocytes, recognizes and eliminates larval skin cells as 'non-self'. More recently, a larval antigen targeted by adult T cells was identified as a 59 kDa protein with a specific peptide sequence. Using antisera directed against the larval antigen and the peptide, immunohistochemistry and western blotting were done to examine expression of the 59 kDa larval antigen in the skin during larval and metamorphic periods. There was no expression before Nieuwkoop and Faber stage 53. Expression was first seen at the beginning of metamorphic stage 54, when hind limbs appear, and increased thereafter, in apical and skein cells of both trunk and tail regions. In the trunk region, expression started to decrease at stage 58, until it completely disappeared at stage 62 (metamorphic climax). In the tail skin, however, expression persisted throughout the metamorphic stages. Treatment of larvae with thyroid hormone (TH) resulted in repression of expression of the 59 kDa molecule in a dose-dependent manner. Downregulation occurred earlier in the trunk than in the tail skin. These results suggest involvement in metamorphic events of an immunological mechanism: differential expression of the larval antigen in the trunk and tail skin cells due to their differing concentration of TH results in the tail, but not the trunk skin, being selectively attacked by the newly differentiating adult-type immune system.  相似文献   
139.
140.
The maternal determinant VegT is required for both endoderm and mesoderm formation by the Xenopus embryo. An important downstream mediator of VegT action is Xsox17, which has been proposed to be induced in cell-autonomous, then signal-dependent phases. We show that Xsox17 is a direct VegT target, but that direct induction of Xsox17 by VegT is rapidly inhibited. This inhibition is relieved by TGF- beta signalling, to which the future endoderm cell is sensitised by VegT, resulting in the observed dependence on cell contact for maintained Xsox17 expression. We propose that this change in regulation is a consequence of a VegT-induced repressor, inhibiting direct induction of early endoderm markers by VegT, and contributing to the formation of the boundary of the endodermal domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号