首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   1篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   6篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   5篇
  2014年   11篇
  2013年   28篇
  2012年   2篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   9篇
  2006年   2篇
  2005年   4篇
  2004年   11篇
  2003年   7篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   8篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1984年   2篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有196条查询结果,搜索用时 15 毫秒
81.
Reactive oxygen species (ROS) have been implicated in the regulation of matrix metalloproteinases (MMPs). The xanthine/xanthine oxidase (X/XO) reaction has been widely used as a source of exogenous ROS in studying MMPs, but commercial XO has also been known to be contaminated by proteolytic activity, and MMPs are protease sensitive substrate. We have investigated the activation of proMMP-2 by X/XO in cultured vascular smooth muscle cells (SMCs). SMCs were incubated with X/XO (unpurified or purified) or XO alone for 24h. X/XO activated proMMP-2 in a dose-dependent manner. A similar profile was observed using XO. Purified XO produced lower amounts of active MMP-2 compared to unpurified XO. EPR study showed that X/XO, not XO itself, produced superoxide anion, which was completely scavenged by SOD. However, X/XO-induced proMMP-2 activation could not be inhibited by combination of SOD and catalase. Incubation with XO either in cell-free conditioned media or in cells resulted in similar amounts of active MMP-2, suggesting that membrane-type-MMPs were not involved in proMMP-2 activation. This was further confirmed by the lack of inhibitory effect of hydroxamate MMP inhibitor, BB1101. Aprotinin blocked unpurified XO-induced proMMP-2 activation in a dose-dependent manner, demonstrating the proteolytic activity contained in XO is essential. We conclude that proteolytic activity contained in XO, rather the ROS derived from X/XO, is responsible for proMMP-2 activation in cultured SMCs. The results also suggest that caution needs to be taken when interpreting the reported results on activation of MMPs where X/XO had been used as an "authentic" source of superoxide anion.  相似文献   
82.
Aortic rings, 4 mm in length, were obtained from rats and placed on isometric force transducers in oxygenated Krebs buffer. Following a period of stabilization, the cumulative dose response relationship to norepinephrine was assessed. The vessels were washed and allowed to return to baseline in Krebs buffer containing xanthine (0.5 mM). Xanthine oxidase (0.1 U/ml) was then added to the bath and vessels incubated for 30 min. The vessels were resuspended in Krebs buffer and cumulative dose-response curves to norepinephrine reevaluated. The results indicate that generation of reactive oxygen metabolites by xanthine/xanthine oxidase decreases the pD2 from 7.80 ± 0.04 to 7.40 ± 0.09 with the endothelium intact. Removal of the endothelium did not attenuate the contractile dysfunction, indicating that endothelial-derived metabolites were not mediating the loss of vasoconstrictor effectiveness. Maximal tension development did not differ between normal and oxidized vessel rings. Introduction of oxypurinol (0.2 mg/ml) to the bath prevented the loss of constrictor responsiveness, thereby confirming that all of the oxidants were derived from the xanthine/xanthine oxidase reaction. Superoxide dismutase (200 U/ml) partially prevented the loss of norepinephrine responsiveness produced by xanthine oxidase-derived radicals. The pD2 in the SOD + xanthine/xanthine oxidase-treated vessels rings (7.19 ± 0.11) was significantly lower tan control vessel rings (7.49 ± 0.04) and significantly higher than xanthine/xanthine oxidase-treated vessels (6.89 ± 0.06). Catalase (1000 U/ml) also partially attenuated the loss of vascular norepinephrine responsiveness. The pD2 for the catalase + xanthine/xanthine oxidase-treated vessels (7.15 ± 0.02) was significantly lower than control vessels (7.39 ± 0.07)and significantly higher than the xanthine/xanthine oxidase-treated vessels (6.82 ± 0.11). The pD2 of vessels treated with a combination of SOD and catalase (7.40 ± 0.10) did not differ from control vessels (7.49 ± 0.12). The results of this study indicate that reactive species produced by the interaction of xanthine with xanthine oxidase depress norepinephrine-induced vasoconstriction. The loss of vasoconstrictor responsiveness appears to involve both superoxide and hydrogen peroxide.  相似文献   
83.
Xanthine oxidoreductase (XOR) could contribute to the pathogenesis of metabolic syndrome through the oxidative stress and the inflammatory response induced by XOR-derived reactive oxygen species and uric acid. Hyperuricemia is strongly linked to hypertension, insulin resistance, obesity and hypertriglyceridemia. The serum level of XOR is correlated to triglyceride/high density lipoprotein cholesterol ratio, fasting glycemia, fasting insulinemia and insulin resistance index. Increased activity of endothelium-linked XOR may promote hypertension. In addition, XOR is implicated in pre-adipocyte differentiation and adipogenesis. XOR and uric acid play a role in cell transformation and proliferation as well as in the progression and metastatic process. Collected evidences confirm the contribution of XOR and uric acid in metabolic syndrome. However, in some circumstances XOR and uric acid may have anti-oxidant protective outcomes. The dual-face role of both XOR and uric acid explains the contradictory results obtained with XOR inhibitors and suggests caution in their therapeutic use.  相似文献   
84.
Extracellular (EC) adenosine, hypoxanthine, xanthine, and inosine concentrations were monitored in vivo in the striatum during steady state, 15 min of complete brain ischemia, and 4 h of reflow and compared with purine and nucleotide levels in the tissue. Ischemia was induced by three-vessel occlusion combined with hypotension (50 mm Hg) in male Sprague-Dawley rats. EC purines were sampled by microdialysis, and tissue adenine nucleotides and purine catabolites were extracted from the in situ frozen brain at the end of the experiment. ATP, ADP, and AMP were analyzed with enzymatic fluorometric techniques, and adenosine, hypoxanthine, xanthine, and inosine with a modified HPLC system. Ischemia depleted tissue ATP, whereas AMP, adenosine, hypoxanthine, and inosine accumulated. In parallel, adenosine, hypoxanthine, and inosine levels increased in the EC compartment. Adenosine reached an EC concentration of 40 microM after 15 min of ischemia. Levels of tissue nucleotides and purines normalized on reflow. However, xanthine levels increased transiently (sevenfold). In the EC compartment, adenosine, inosine, and hypoxanthine contents normalized slowly on reflow, whereas the xanthine content increased. The high EC levels of adenosine during ischemia may turn off spontaneous neuronal firing, counteract excitotoxicity, and inhibit ischemic calcium uptake, thereby exerting neuroprotective effects.  相似文献   
85.
Xanthine and Uric Acid Levels in Rat Brain Following Focal Ischemia   总被引:4,自引:4,他引:0  
Changes of the xanthine and uric acid (UA) levels in rat forebrain following focal cerebral ischemia were studied by reversed-phase HPLC with electrochemical detection. Focal ischemia was induced by occluding the left middle cerebral artery in the rat. The xanthine level in the normal group was 11.50 nmol/g tissue. In the ischemic group, the xanthine concentration in the ischemic hemisphere progressively increased after occlusion and reached a maximum value of 59.42 nmol/g tissue 4 h after operation. The UA level in the normal group was 2.20 nmol/g tissue, whereas in the ischemic group the UA concentration in the ischemic hemisphere gradually increased after occlusion, reaching a value of 38.53 nmol/g tissue 24 h after ischemia. The concentration of UA remained elevated in the ischemic hemisphere until 48 h after occlusion, and reached a maximum value of 38.98 nmol/g tissue. The xanthine and UA levels in the contralateral hemisphere remained unchanged. The xanthine and UA concentrations in the sham-operated group did not show a significant increase after operation. The time course of xanthine and UA levels suggests that in ischemic forebrain UA is formed from xanthine as a product of purine metabolism.  相似文献   
86.
This study mainly focused on the modification of the X2 position in febuxostat analogs. A series of 1-phenyl-1H-1,2,3-triazole-4-carboxylic acid derivatives (1a-s) with an N atom occupying the X2 position was designed and synthesized. Evaluation of their inhibitory potency in vitro on xanthine oxidase indicated that these compounds exhibited micromolar level potencies, with IC50 values ranging from 0.21 µM to 26.13 μM. Among them, compound 1s (IC50 = 0.21 μM) showed the most promising inhibitory effects and was 36-fold more potent than allopurinol, but was still 13-fold less potent than the lead compound Y-700, which meant that a polar atom fused at the X2 position could be unfavorable for potency. The Lineweaver-Burk plot revealed that compound 1s acted as a mixed-type xanthine oxidase inhibitor. Analysis of the structure-activity relationships demonstrated that a more lipophilic ether tail (e.g., meta-methoxybenzoxy) at the 4′-position could benefit the inhibitory potency. Molecular modeling provided a reasonable explanation for the structure–activity relationships observed in this study.  相似文献   
87.
Molecular modeling techniques were applied to the design, synthesis and optimization of a new series of xanthine based adenosine A2A receptor antagonists. The optimized lead compound was converted to a PEG derivative and a functional in vitro bioassay used to confirm efficacy. Additionally, the PEGylated version showed enhanced aqueous solubility and was inert to photoisomerization, a known limitation of existing antagonists of this class.  相似文献   
88.
Urinary metabolic ratios of caffeine are used in humans to assess the enzymatic activities of cytochrome P450 isoenzyme 1A2 (CYP1A2), xanthine oxidase (XO) and for phenotyping individuals for the bimodal N-acetyltransferase 2 (NAT2), all of them involved in the activation or detoxification of various xenobiotic compounds. Most reported analytical procedures for the measurement of the urinary metabolites of caffeine include a liquid–liquid extraction of urine samples prior to their analysis by reversed-phase HPLC. At neutral to basic pH however, 5-acetylamino-6-formylamino-3-methyluracil (AFMU), a metabolite of caffeine, spontaneously decomposes to 5-acetylamino-6-amino-3-methyluracil (AAMU). Since AAMU is not extracted in most organic solvents, the extent of AFMU decomposition cannot be precisely assessed. Although the decomposition reaction can be minimized by immediate acidification of the urine, accurate results can only be obtained when both AAMU and AFMU are monitored, or alternatively, if AAMU is measured after complete transformation of AFMU into AAMU in basic conditions. We report a liquid chromatographic method for the simultaneous quantitative analysis of the five urinary metabolites of caffeine used for the CYP1A2, XO and NAT2 phenotyping studies: AAMU, AFMU, 1-methylxanthine, 1-methyluric acid and 1,7-dimethyluric acid. These metabolites are satisfactory separated from all other known caffeine metabolites as well as endogenous urinary constituents. Sample treatment does not require any liquid–liquid extraction procedure. Urine samples are diluted and centrifuged before being injected (10 μl) onto a YMC-Pack Polyamine II (250×4.6 mm) column. A step-wise gradient elution program is applied using acetonitrile–0.75% (v/v) formic acid: (91:9) at 0 min→(75:25) at 25 min→(65:35) at 35 min→(65:35) at 45 min, followed by a re-equilibration step to the initial solvent composition. The flow-rate is 1.0 ml/min and the separations are monitored by UV absorbance at 260 and 280 nm. The procedure described here represents a substantial improvement over previous methods: a single analysis and a minimal urine sample treatment enables the simultaneous quantitation of five caffeine metabolites, notably AFMU and AAMU, used for the determination of CYP450 1A2, XO and NAT2 enzyme activity. Importantly enough, phenotyping individuals for the bimodal NAT2 is made possible without the uncertainty associated with the deformylation of AFMU, which is likely to happen at all steps prior to the analysis, during sample storage and even in the bladder of the subjects.  相似文献   
89.
《Free radical research》2013,47(2):232-239
Abstract

Xanthine oxidase (XO) plays an important role in various forms of ischemic and vascular injuries, inflammatory diseases and chronic heart failure. The XO inhibitors allopurinol and oxypurinol held considerable promise in the treatment of these conditions both in experimental animals and in human clinical trials. More recently, an endothelium-based protective effect of sildenafil has been reported in preconditioning prior to ischemia/reperfusion in healthy human subjects. Based on the structural similarities between allopurinol and oxypurinol with sildenafil and with zaprinast the authors have investigated the potential effects of these latter compounds on the buttermilk XO and on non-tumourigenic (HMEC) and malignant (MCF7) human mammary epithelial cells. Both sildenafil and zaprinast induced a significant and consistent decrease of XO expression and activity in either cell line. In MCF7 cells only, this effect was associated with the abrogation of xanthine-induced cytotoxicity. Overall, the data suggest that the protective effect of sildenafil on epithelial cells is a consequence of the inhibition of the XO and of the resulting decrease of free oxygen radical production that may influence the expression of NADPH oxidase and PDE-5.  相似文献   
90.
Xanthine oxidase is a molybdenum-containing enzyme catalyzing the hydroxylation of a sp2-hybridized carbon in a broad range of aromatic heterocycles and aldehydes. Crystal structures of the bovine enzyme in complex with the physiological substrate hypoxanthine at 1.8 Å resolution and the chemotherapeutic agent 6-mercaptopurine at 2.6 Å resolution have been determined, showing in each case two alternate orientations of substrate in the two active sites of the crystallographic asymmetric unit. One orientation is such that it is expected to yield hydroxylation at C-2 of substrate, yielding xanthine. The other suggests hydroxylation at C-8 to give 6,8-dihydroxypurine, a putative product not previously thought to be generated by the enzyme. Kinetic experiments demonstrate that >98% of hypoxanthine is hydroxylated at C-2 rather than C-8, indicating that the second crystallographically observed orientation is significantly less catalytically effective than the former. Theoretical calculations suggest that enzyme selectivity for the C-2 over C-8 of hypoxanthine is largely due to differences in the intrinsic reactivity of the two sites. For the orientation of hypoxanthine with C-2 proximal to the molybdenum center, the disposition of substrate in the active site is such that Arg880 and Glu802, previous shown to be catalytically important for the conversion of xanthine to uric acid, play similar roles in hydroxylation at C-2 as at C-8. Contrary to the literature, we find that 6,8-dihydroxypurine is effectively converted to uric acid by xanthine oxidase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号