首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54119篇
  免费   4443篇
  国内免费   1712篇
  60274篇
  2023年   779篇
  2022年   1163篇
  2021年   1455篇
  2020年   1790篇
  2019年   2310篇
  2018年   2166篇
  2017年   1497篇
  2016年   1477篇
  2015年   1681篇
  2014年   3289篇
  2013年   3807篇
  2012年   2416篇
  2011年   3165篇
  2010年   2490篇
  2009年   2800篇
  2008年   3008篇
  2007年   2927篇
  2006年   2490篇
  2005年   2268篇
  2004年   1998篇
  2003年   1698篇
  2002年   1487篇
  2001年   988篇
  2000年   778篇
  1999年   818篇
  1998年   772篇
  1997年   641篇
  1996年   583篇
  1995年   592篇
  1994年   575篇
  1993年   461篇
  1992年   416篇
  1991年   366篇
  1990年   286篇
  1989年   263篇
  1988年   221篇
  1987年   231篇
  1986年   180篇
  1985年   331篇
  1984年   461篇
  1983年   411篇
  1982年   426篇
  1981年   350篇
  1980年   351篇
  1979年   275篇
  1978年   218篇
  1977年   210篇
  1976年   211篇
  1975年   180篇
  1974年   165篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Residues P19, L28, C31, and C32 have been implicated (Di Donato A, Cafaro V, D'Alessio G, 1994, J Biol Chem 269:17394-17396; Mazzarella L, Vitagliano L, Zagari A, 1995, Proc Natl Acad Sci USA: forthcoming) with key roles in determining the dimeric structure and the N-terminal domain swapping of seminal RNase. In an attempt to have a clearer understanding of the structural and functional significance of these residues in seminal RNase, a series of mutants of pancreatic RNase A was constructed in which one or more of the four residues were introduced into RNase A. The RNase mutants were examined for: (1) the ability to form dimers; (2) the capacity to exchange their N-terminal domains; (3) resistance to selective cleavage by subtilisin; and (4) antitumor activity. The experiments demonstrated that: (1) the presence of intersubunit disulfides is both necessary and sufficient for engendering a stably dimeric RNase; (2) all four residues play a role in determining the exchange of N-terminal domains; (3) the exchange is the molecular basis for the RNase antitumor action; and (4) this exchange is not a prerequisite in an evolutionary mechanism for the generation of dimeric RNases.  相似文献   
122.
123.
Human gastric mucosal cells were isolated from the resected fundic mucosa of peptic ulcer patients. The intracellular content and secretion of intrinsic factor were estimated by binding to cyano[57Co]cobalamin. The content was maximal in the enriched parietal cell fraction which also displayed the highest H+ production as measured by amino[14C]pyrine uptake. Secretagogues evoked full response after 15 min of incubation: pentagastrin (181% of basal secretion), carbachol (208%), histamine (250%) and dibutyryl cyclic adenosine monophosphate (304%). The phosphodiesterase inhibitor isobutylmethylxanthine was slightly more effective even than dibutyryl cAMP. The response to histamine was abolished by ranitidine, indicating activation of adenylate cyclase via histamine H2 receptors, but remained unaffected by atropine, which in turn blocked the carbachol effect, whereas ranitidine was ineffective. The mean formation rate was 8.4 fmol intrinsic factor/106 cells per h under basal conditions and 14.3 fmol in response to histamine.  相似文献   
124.
Phosphate entry into human erythrocytes is irreversibly inhibited by treatment of the cells with the water-soluble carbodiimides 1-ethy1-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluene sulfonate (CMC) in the absence of added nucleophile. EDC is the more potent inhibitor (40% inhibition, 2 mM EDC, 5 min, 37°C, 50% hematocrit, pH 6.9), while more than 20 mM CMC is required to give the same inhibition under identical conditions. EDC inhibition is temperature-dependent, being complete in 5 min at 37°C, and sensitive to extracellular pH. At pH 6.9 only 50% of transport is rapidly inhibited by EDC, but at alkaline pH over 80% of transport is inhibited. Inhibition is not prevented by modification of membrane sulfhydryl groups but is decreased in the presence of 4,4′-dinitrostilbene-2,2′-disulfonic acid (DNDS), a reversible competitive inhibitor of anion transport. EDC treatment leads to crosslinking of erythrocyte membrane proteins, but differences between the time course of this action and inhibition of transport indicate that most transport inhibition is not due to crosslinking of membrane proteins.  相似文献   
125.
Target size analysis by radiation inactivation is widely used for molecular weight determination of membrane enzymes and receptors in situ without the need for prior solubilization or purification. However, since most molecular weight data available in the literature on membrane proteins involve the use of detergents for solubilization, the target sizes of membrane proteins in situ and after solubilization by detergent treatment have been compared. Using data from the literature and personal results, three different types of behavior of membrane proteins in presence of detergents were found: (i) uncoupling of subunits (electric eel acetylcholinesterase, placental steroid sulfatase, and human nonspecific β-glucosidase); (ii) coupling of protein molecules (mouse liver neuraminidase, and rat liver insulin receptor regulatory component); and (iii) no major change in quaternary structure (rat liver insulin receptor, kidney γ-glutamyltransferase, asialoglycoprotein receptor, insulin degrading enzyme, and human leucocyte neuraminidase). For all these proteins, there is a statistically significant increase in target size of about 24% over the value obtained in situ without detergent. A relatively large body of literature data involving a variety of membrane proteins, membrane types, and irradiation conditions (electron accelerators or 60Co sources, and proteins irradiated in lyophilized form or frozen solution) was examined, and it was concluded that target sizes of membrane proteins, irradiated in the presence of Triton X-100, should be diminished by a factor of about 24% to obtain the molecular weight value.  相似文献   
126.
Photoaffinity labeling techniques have recently demonstrated that mammalian β1- and β2-adrenergic receptors reside on peptides of Mr 62 000–64 000. These receptor peptides are susceptible to endogenous metalloproteinases which produce peptides of Mr 30 000–55 000. Several proteinase inhibitors markedly attenuate this process, specifically EDTA and EGTA. In this study we investigated the functional significance of this proteolysis (and its inhibition) in the β2-adrenergic receptor-adenylate cyclase system derived from rat lung membranes. Membrane preparations containing proteolytically derived fragments of the receptor of Mr 40000–55 000 are fully functional with respect to their ability to bind β-adrenergic antagonist radioligands such as [3H]dihydroalprenolol and β-adrenergic antagonist photoaffinity reagents such as p-azido-m-[125I]iodobenzylcarazolol. They retain the ability to form a high-affinity, agonist-promoted, guanine nucleotide-sensitive complex thought to represent a ternary complex of agonist, receptor and guanine nucleotide regulatory protein. Nonetheless, after proteolysis, GTP is less able to revert this high-affinity receptor complex to one of lower affinity, and all aspects of adenylate cyclase stimulation are reduced. In addition, the functional integrity of the N protein in membranes prepared without proteinase inhibitors is reduced as assessed by reconstitution studies with the cyc[su− variant of S49 lymphoma cell membranes. These results suggest that endogenous proteolysis does not directly impair the ability of β-adrenergic receptors to either bind ligands or interact with the guanine nucleotide regulatory protein. However, they imply that endogenous proteolysis likely impairs the functionality of other components of the adenylate cyclase system, such as the nucleotide regulatory protein.  相似文献   
127.
An attempt is made to integrate the knowledge on the role of hormones and guanyl nucleotides in regulating adenylate cyclase into a single molecular model. It is suggested that the hormone catalyzes the activation of the enzyme adenylate cyclase by facilitating the conversion of the enzyme from its inactive state to its active form. The hormone is also responsible for the termination of the signal namely the deactivation of the enzyme by inducing the hydrolysis of GTP at its regulatory site. The relative rates of these two processes determine the steady state concentration of the active form of the enzyme. The model also explains the difference in behaviour between GTP and its non-hydrolyzable analogs GppNHp and GTPγS.  相似文献   
128.
The effects of auxin and gibberellic acid on cell wall composition in various regions of epicotyls of azuki bean ( Vigna angularis Ohwi and Ohashi cv. Takara) were investigated with the following results. (1) Young segments excised from apical regions of the epicotyl elongated in response to added 10−4 M indole-3-acetic acid (IAA). When the segments were supplied with 50 m M sucrose, the IAA-induced segment growth was accompanied by enhanced overall synthesis of cell wall polysaccharides, such as xyloglucans, polyuronides and cellulose. This IAA effect on the cell wall synthesis is a consequence of extension growth induced by IAA. Gibberellic acid (GA) at 10−4 M synergistically enhanced the IAA-induced cell wall synthesis as well as IAA-induced extension growth, although GA by itself neither stimulated the cell wall synthesis nor extension growth. In the absence of sucrose, cell wall synthesis was not induced by IAA or GA. (2) In mature segments excised from basal regions of the epicotyl, no extension growth was induced by IAA or GA. GA enhanced the synthesis of xylans and cellulose when the segments were supplied with 50 m M sucrose. IAA had no effect on the cell wall synthesis. These findings indicate that synthesis of polyuronides, xyloglucans and cellulose, which occurs during extension growth of the apical region of the epicotyl, is regulated chiefly by auxin whereas synthesis of xylans and cellulose during cell maturation in the basal region of the epicotyl is regulated by GA.  相似文献   
129.
Endogenous, free indol-3yl-acetic acid (IAA) levels were measured in the main stem in the 10-year-old cambial zone, in the adjoining differentiating xylem, and in the adjoining mature xylem of 15–20-year-old Pinus contorta Dougl. by single-ion-current monitoring, combined gas chromatography — mass spectrometry, on several dates from early spring to early winter. Microscopy was used to determine the state of cambial activity on each harvest date. The IAA levels were found to be nearly constant at 1 g g-1 DW in the cambial zone from March to July, then to increase to near 2 g g-1 DW during the remainder of the growth season. No clear correlation was evident between number of fusiform cells per radial file and IAA content in the cambial zone. By contrast, the IAA content in differentiating xylem was higher than that in the adjoining meristematic zone on all harvest dates and also exhibited marked seasonal variation, peaking near 16 g g-1 DW in mid summer, and declining to 1 g g-1 DW in autumn. In mature xylem, IAA levels were very low and showed negligible variation. The fresh weight to dry weight ratio of differentiating xylem was greater than that of the cambial zone, and greater in the cambial zone than in mature xylem.  相似文献   
130.
We report fluorescence lifetimes for in vivo chlorophyll a using a time-correlated single-photon counting technique with tunable dye laser excitation. The fluorescence decay of dark-adapted chlorella is almost exponential with a lifetime of 490 ps, which is independent of excitation from 570 nm to 640 nm.Chloroplasts show a two-component decay of 410 ps and approximately 1.4 ns, the proportion of long component depending upon the fluorescence state of the chloroplasts. The fluorescence lifetime of Photosystem I was determined to be 110 ps from measurements on fragments enriched in Photosystem I prepared from chloroplasts with digitonin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号