首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4973篇
  免费   232篇
  国内免费   46篇
  2024年   2篇
  2023年   47篇
  2022年   100篇
  2021年   99篇
  2020年   107篇
  2019年   116篇
  2018年   143篇
  2017年   43篇
  2016年   56篇
  2015年   113篇
  2014年   246篇
  2013年   281篇
  2012年   181篇
  2011年   429篇
  2010年   329篇
  2009年   283篇
  2008年   251篇
  2007年   276篇
  2006年   267篇
  2005年   250篇
  2004年   236篇
  2003年   156篇
  2002年   157篇
  2001年   45篇
  2000年   59篇
  1999年   75篇
  1998年   82篇
  1997年   97篇
  1996年   61篇
  1995年   96篇
  1994年   68篇
  1993年   51篇
  1992年   46篇
  1991年   33篇
  1990年   20篇
  1989年   21篇
  1988年   32篇
  1987年   35篇
  1986年   14篇
  1985年   44篇
  1984年   45篇
  1983年   38篇
  1982年   40篇
  1981年   20篇
  1980年   21篇
  1979年   13篇
  1978年   6篇
  1977年   6篇
  1976年   12篇
  1972年   1篇
排序方式: 共有5251条查询结果,搜索用时 547 毫秒
21.
Abstract. When plants of rice ( Oryza saliva L.) are subjected to mildly saline (50mol m−3 NaCl) conditions, the leaves show symptoms of water deficit, even though ion accumulation has been more than sufficient to adjust to the decrease in external water potential. After a few days of exposure to salt, there is a negative correlation, in a population of leaves, between the leaf water concentration (g water per g dry weight) and their sodium concentration (mmol Na per g dry weight). Ion concentrations in the cell walls and the cytoplasm of cells of plants grown in low salinity were measured by X-ray microanalysis. The NaCl concentration in solution in the apoplast was calculated to be around 600mol m−3 in leaves of plants whose roots were exposed to only 50 mol m−3 NaCl. This constitutes strong evidence that an important factor in salt damage in rice is dehydration due to the extracellular accumulation of salt as suggested in the Oertli hypothesis. The implication, that changes in tissue ion concentration and solute potentials equivalent to the external medium is not evidence of plant osmotic adjustment to salinity, is discussed.  相似文献   
22.
We recently showed that a side-chain industrial co-oligosiloxane presents a quenchable enlarged blue phase behaviour at the cholesteric-isotropic phase transition. In this paper, we present the results of a structural study based on X-ray diffraction, differential scanning calorimetry and optical measurements. In particular, the smectic A organisation is demonstrated in the lower temperature domain, which was hitherto understood as a cholesteric phase. A structural model for this phase is proposed on the basis of the analysis of the anisotropic scattering of stretched fibers. Our results also suggest that the observed glass transition is indeed a rather complex phenomenon, which seems to involve not only the freezing of the main chains, but also smectic correlations at the side-chain level. Moreover, the calorimetric study indicates that, notwithstanding the conservation of the processed film's optical properties, low kinetic reorganisations occur at room temperature.  相似文献   
23.
Calcium in the synergid cells and other regions of pearl millet ovaries   总被引:8,自引:2,他引:6  
Summary The synergids and other cells of mature, unpollinated pearl millet ovaries were investigated using: (1) freeze-substitution fixation in conjunction with scanning electron microscope observations and energy-dispersive X-ray microanalysis to localize total calcium (Ca) and other elements, and (2) antimonate precipitation to selectively localize loosely sequestered, exchangeable calcium (Ca++). In freeze-fixed ovaries, the synergid cells, ovary wall, nucellus, and other regions of the ovary displayed, respectively and relatively, extremely high, high, moderate, and low levels of Ca. In antimonate-fixed ovaries, Ca-containing antimonate precipitates exhibited similar distribution patterns. In ovaries fixed using the conventional 2% (w/v) antimonate in fixatives, the synergids were disrupted due to precipitate overload. In the ovary wall, precipitates were mainly located in the intercellular spaces. Some precipitates were observed at the micropyle and along the outer ovule integument, associated with diffuse extracellular material, and in the cell walls of nucellar cells proximal to the micropyle. Examination of precipitate distribution inside the synergids was possible in ovaries fixed using 0.5% (w/v) antimonate in the fixatives. Cytoplasmic organelles of all synergids examined exhibited variable states of disintegration. The amount of precipitates associated with the degenerated organelles appeared to be proportional to the degree of their degeneration. Distinct precipitates were localized in contiguous regions of the nucellar cells fused with the embryo sac, the micropylar half of the embryo sac wall, and the filiform apparatus. The results are discussed in relation to the involvement of Ca++ in mediating the functions of synergid cells during fertilization in angiosperms.On Specific Cooperative Agreement 58-43YK-8-0026 with the Department of Biochemistry, University of Georgia, Athens, GA 30602, USA  相似文献   
24.
The enzyme phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 ester bond of membrane phospholipids. The highly conserved Tyr residues 52 and 73 in the enzyme form hydrogen bonds to the carboxylate group of the catalytic Asp-99. These hydrogen bonds were initially regarded as essential for the interfacial recognition and the stability of the overall catalytic network. The elimination of the hydrogen bonds involving the phenolic hydroxyl groups of the Tyr-52 and -73 by changing them to Phe lowered the stability but did not significantly affect the catalytic activity of the enzyme. The X-ray crystal structure of the double mutant Y52F/Y73F has been determined at 1.93 A resolution to study the effect of the mutation on the structure. The crystals are trigonal, space group P3(1)21, with cell parameters a = b = 46.3 A and c = 102.95 A. Intensity data were collected on a Siemens area detector, 8,024 reflections were unique with an R(sym) of 4.5% out of a total of 27,203. The structure was refined using all the unique reflections by XPLOR to a final R-factor of 18.6% for 955 protein atoms, 91 water molecules, and 1 calcium ion. The root mean square deviation for the alpha-carbon atoms between the double mutant and wild type was 0.56 A. The crystal structure revealed that four hydrogen bonds were lost in the catalytic network; three involving the tyrosines and one involving Pro-68. However, the hydrogen bonds of the catalytic triad, His-48, Asp-99, and the catalytic water, are retained. There is no additional solvent molecule at the active site to replace the missing hydroxyl groups; instead, the replacement of the phenolic OH groups by H atoms draws the Phe residues closer to the neighboring residues compared to wild type; Phe-52 moves toward His-48 and Asp-99 of the catalytic diad, and Phe-73 moves toward Met-8, both by about 0.5 A. The closing of the voids left by the OH groups increases the hydrophobic interactions compensating for the lost hydrogen bonds. The conservation of the triad hydrogen bonds and the stabilization of the active site by the increased hydrophobic interactions could explain why the double mutant has activity similar to wild type. The results indicate that the aspartyl carboxylate group of the catalytic triad can function alone without additional support from the hydrogen bonds of the two Tyr residues.  相似文献   
25.
The three-dimensional structure of a modified human lysozyme (HL), Glu 53 HL, in which Asp 53 was replaced by Glu, has been determined at 1.77 A resolution by X-ray analysis. The backbone structure of Glu 53 HL is essentially the same as the structure of wild-type HL. The root mean square difference for the superposition of equivalent C alpha atoms is 0.141 A. Except for the Glu 53 residue, the structure of the active site region is largely conserved between Glu 53 HL and wild-type HL. However, the hydrogen bond network differs because of the small shift or rotation of side chain groups. The carboxyl group of Glu 53 points to the carboxyl group of Glu 35 with a distance of 4.7 A between the nearest carboxyl oxygen atoms. A water molecule links these carboxyl groups by a hydrogen bond bridge. The active site structure explains well the fact that the binding ability for substrates does not significantly differ between Glu 53 HL and wild-type HL. On the other hand, the positional and orientational change of the carboxyl group of the residue 53 caused by the mutation is considered to be responsible for the low catalytic activity (ca. 1%) of Glu 53 HL. The requirement of precise positioning for the carboxyl group suggests the possibility that the Glu 53 residue contributes more than a simple electrostatic stabilization of the intermediate in the catalysis reaction.  相似文献   
26.
We report the X-ray analysis at 2.0 A resolution for crystals of the aspartic proteinase endothiapepsin (EC 3.4.23.6) complexed with a potent difluorostatone-containing tripeptide renin inhibitor (CP-81,282). The scissile bond surrogate, an electrophilic ketone, is hydrated in the complex. The pro-(R) (statine-like) hydroxyl of the tetrahedral carbonyl hydrate is hydrogen-bonded to both active-site aspartates 32 and 215 in the position occupied by a water in the native enzyme. The second hydroxyl oxygen of the hydrate is hydrogen-bonded only to the outer oxygen of Asp 32. These experimental data provide a basis for a model of the tetrahedral intermediate in aspartic proteinase-mediated cleavage of the amide bond. This indicates a mechanism in which Asp 32 is the proton donor and Asp 215 carboxylate polarizes a bound water for nucleophilic attack. The mechanism involves a carboxylate (Asp 32) that is stabilized by extensive hydrogen bonding, rather than an oxyanion derivative of the peptide as in serine proteinase catalysis.  相似文献   
27.
X-ray microanalysis has been used to determine the elemental composition of oil-palm (Elaeis guineesis) cell suspensions without the use of cryoprotectants. Results based on individual cells were gathered over a typical growth cycle of 14 d. During the log phase (5–7 d) there is an increase in the number of cells containing high concentrations of both K (400 mmol kg-1 dry weight) and P (400 mmol kg-1 dry weight). Morphologically these cells had thin cell walls and were frequently joined to other cells (two to five cells per clump).  相似文献   
28.
Summary In the thyroid follicles of species of cyclostomes, a hagfish and a lamprey, the distribution of stable iodine was examined by electron-probe X-ray microanalysis. A high concentration of stable iodine, heterogeneously distributed, was observed in the follicular cells of hagfish thyroid follicles. In the lamprey a low concentration of iodine was seen in the follicular lumina. The relative values for stable iodine determined in this way corresponded to values obtained by a chemical analytical method.  相似文献   
29.
A chemical modification of the gene 5 DNA binding protein (G5BP) from bacteriophage fd was investigated using X-ray diffraction and difference Fourier analysis. The crystalline protein was reacted with pentaammineruthenium (III) trichloride, Ru(NH3)5Cl3, a reagent believed specific for histidine residues and useful in NMR and chemical modification studies of proteins. The major ruthenium site was found by difference Fourier analysis to be 4 Å from histidine 64, the only histidine residue in the molecule. A second bipartite site, believed to be a ruthenium-anion pair, appeared to be salt-bridged to glutamic acid 40 and arginine 16. Indications were present in the difference Fourier results to suggest that the loop containing tyrosine 41 had undergone a slight conformational rearrangement to accommodate this interaction.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号