首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44953篇
  免费   17345篇
  国内免费   106篇
  2023年   31篇
  2022年   57篇
  2021年   502篇
  2020年   2834篇
  2019年   4377篇
  2018年   4671篇
  2017年   4604篇
  2016年   4303篇
  2015年   4187篇
  2014年   4186篇
  2013年   4543篇
  2012年   3931篇
  2011年   4097篇
  2010年   3575篇
  2009年   2414篇
  2008年   2544篇
  2007年   1974篇
  2006年   1978篇
  2005年   1658篇
  2004年   1289篇
  2003年   1418篇
  2002年   1205篇
  2001年   897篇
  2000年   441篇
  1999年   266篇
  1998年   40篇
  1997年   36篇
  1996年   32篇
  1995年   28篇
  1994年   23篇
  1993年   27篇
  1992年   30篇
  1991年   13篇
  1990年   7篇
  1989年   8篇
  1988年   21篇
  1987年   6篇
  1986年   11篇
  1985年   17篇
  1984年   19篇
  1983年   11篇
  1982年   16篇
  1981年   8篇
  1980年   16篇
  1979年   16篇
  1978年   10篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
911.

Aim

Across the tropics, large‐bodied mammal species are threatened by rapid and widespread forest habitat conversion by either commercial logging or agricultural expansion. How such species use these habitats is an important area of research for guiding their future management. The tropical forest‐dwelling sun bear, Helarctos malayanus, is the least known of the eight bear species. Consequently, the IUCN/SSC Bear Specialist Group ranks research on this species as a top priority. This study aims to investigate landscape variables that influence sun bear habitat use in forests under varying levels of degradation and protection.

Location

A 20,998 km2 Sumatra forest landscape covering Kerinci Seblat National Park (KSNP), Batang Hari Protection Forest (BHPF) and neighbouring logging and agricultural concessions.

Methods

An occupancy‐based sampling technique using detection/non‐detection data with 10 landscape covariates was applied in six study areas that operated a total of 125 camera traps. The potential differences between habitat use (ψ) of sun bears were first modelled with broad‐scale covariates of study area, land‐use types and forest type. Sun bear habitat use was then investigated with the finer‐scale landscape features associated within these areas.

Results

From 10,935 trap nights, sun bears were recorded at altitudes ranging from 365 to 1791 m. At a broad‐scale, habitat use increased with protection status, being highest in KSNP (0.688 ± 0.092, ± SE) and BHPF (0.621 ± 0.110) compared to production (0.418 ± 0.121) and convertible (0.286 ± 0.122) forests. Within these areas, sun bears showed a preference for forest that was further from public roads and villages and at a lower elevation.

Main conclusions

The habitat suitability model identified several high‐quality habitat patches outside of the priority conservation areas for immediate protection. Consequently, conservation management strategies should emphasize the importance of high conservation value forests and prohibit further conversion of threatened lowland forests.
  相似文献   
912.
The rate of vegetation recovery from boreal wildfire influences terrestrial carbon cycle processes and climate feedbacks by affecting the surface energy budget and land‐atmosphere carbon exchange. Previous forest recovery assessments using satellite optical‐infrared normalized difference vegetation index (NDVI) and tower CO2 eddy covariance techniques indicate rapid vegetation recovery within 5–10 years, but these techniques are not directly sensitive to changes in vegetation biomass. Alternatively, the vegetation optical depth (VOD) parameter from satellite passive microwave remote sensing can detect changes in canopy biomass structure and may provide a useful metric of post‐fire vegetation response to inform regional recovery assessments. We analyzed a multi‐year (2003–2010) satellite VOD record from the NASA AMSR‐E (Advanced Microwave Scanning Radiometer for EOS) sensor to estimate forest recovery trajectories for 14 large boreal fires from 2004 in Alaska and Canada. The VOD record indicated initial post‐fire canopy biomass recovery within 3–7 years, lagging NDVI recovery by 1–5 years. The VOD lag was attributed to slower non‐photosynthetic (woody) and photosynthetic (foliar) canopy biomass recovery, relative to the faster canopy greenness response indicated from the NDVI. The duration of VOD recovery to pre‐burn conditions was also directly proportional (P < 0.01) to satellite (moderate resolution imaging spectroradiometer) estimated tree cover loss used as a metric of fire severity. Our results indicate that vegetation biomass recovery from boreal fire disturbance is generally slower than reported from previous assessments based solely on satellite optical‐infrared remote sensing, while the VOD parameter enables more comprehensive assessments of boreal forest recovery.  相似文献   
913.
Cold‐water coral (CWC) reefs are recognized as ecologically and biologically significant areas that generate habitats and diversity. The interaction between hydrodynamics and CWCs has been well studied at the Mingulay Reef Complex, a relatively shallow area of reefs found on the continental shelf off Scotland, UK. Within ‘Mingulay Area 01’ a rapid tidal downwelling of surface waters, brought about as an internal wave, is known to supply warmer, phytoplankton‐rich waters to corals growing on the northern flank of an east‐west trending seabed ridge. This study shows that this tidal downwelling also causes short‐term perturbations in the inorganic carbon (CT) and nutrient dynamics through the water column and immediately above the reef. Over a 14 h period, corresponding to one semi‐diurnal tidal cycle, seawater pH overlying the reef varied by ca. 0.1 pH unit, while pCO2 shifted by >60 μatm, a shift equivalent to a ca. 25 year jump into the future, with respect to atmospheric pCO2. During the summer stratified period, these downwelling events result in the reef being washed over with surface water that has higher pH, is warmer, nutrient depleted, but rich in phytoplankton‐derived particles compared to the deeper waters in which the corals sit. Empirical observations, together with outputs from the European Regional Shelf Sea Ecosystem Model, demonstrate that the variability that the CWC reefs experience changes through the seasons and into the future. Hence, as ocean acidification and warming increase into the future, the downwelling event specific to this site could provide short‐term amelioration of corrosive conditions at certain times of the year; however, it could additionally result in enhanced detrimental impacts of warming on CWCs. Natural variability in the CT and nutrient conditions, as well as local hydrodynamic regimes, must be accounted for in any future predictions concerning the responses of marine ecosystems to climate change.  相似文献   
914.
Grassland productivity in response to climate change and land use is a global concern. In order to explore the effects of climate change and land use on net primary productivity (NPP), NPP partitioning [fBNPP, defined as the fraction of belowground NPP (BNPP) to NPP], and rain‐use efficiency (RUE) of NPP, we conducted a field experiment with warming (+3 °C), altered precipitation (double and half), and annual clipping in a mixed‐grass prairie in Oklahoma, USA since July, 2009. Across the years, warming significantly increased BNPP, fBNPP, and RUEBNPP by an average of 11.6%, 2.8%, and 6.6%, respectively. This indicates that BNPP was more sensitive to warming than aboveground NPP (ANPP) since warming did not change ANPP and RUEANPP much. Double precipitation stimulated ANPP, BNPP, and NPP but suppressed RUEANPP, RUEBNPP, and RUENPP while half precipitation decreased ANPP, BNPP, and NPP but increased RUEANPP, RUEBNPP, and RUENPP. Clipping interacted with altered precipitation in impacting RUEANPP, RUEBNPP, and RUENPP, suggesting land use could confound the effects of precipitation changes on ecosystem processes. Soil moisture was found to be a main factor in regulating variation in ANPP, BNPP, and NPP while soil temperature was the dominant factor influencing fBNPP. These findings suggest that BNPP is critical point to future research. Additionally, results from single‐factor manipulative experiments should be treated with caution due to the non‐additive interactive effects of warming with altered precipitation and land use (clipping).  相似文献   
915.
Soil organic matter (SOM) mineralization processes are central to the functioning of soils in relation to feedbacks with atmospheric CO2 concentration, to sustainable nutrient supply, to structural stability and in supporting biodiversity. Recognition that labile C‐inputs to soil (e.g. plant‐derived) can significantly affect mineralization of SOM (‘priming effects’) complicates prediction of environmental and land‐use change effects on SOM dynamics and soil C‐balance. The aim of this study is to construct response functions for SOM priming to labile C (glucose) addition rates, for four contrasting soils. Six rates of glucose (3 atm% 13C) addition (in the range 0–1 mg glucose g?1 soil day?1) were applied for 8 days. Soil CO2 efflux was partitioned into SOM‐ and glucose‐derived components by isotopic mass balance, allowing quantification of SOM priming over time for each soil type. Priming effects resulting from pool substitution effects in the microbial biomass (‘apparent priming’) were accounted for by determining treatment effects on microbial biomass size and isotopic composition. In general, SOM priming increased with glucose addition rate, approaching maximum rates specific for each soil (up to 200%). Where glucose additions saturated microbial utilization capacity (>0.5 mg glucose g?1 soil), priming was a soil‐specific function of glucose mineralization rate. At low to intermediate glucose addition rates, the magnitude (and direction) of priming effects was more variable. These results are consistent with the view that SOM priming is supported by the availability of labile C, that priming is not a ubiquitous function of all components of microbial communities and that soils differ in the extent to which labile C stimulates priming. That priming effects can be represented as response functions to labile C addition rates may be a means of their explicit representation in soil C‐models. However, these response functions are soil‐specific and may be affected by several interacting factors at lower addition rates.  相似文献   
916.
An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2007 to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty‐five different associated projects were conducted across five US agencies over the course of nearly a decade involving hundreds of researchers. One of the primary objectives of the intensive campaign was to investigate the ability of atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 flux over the major croplands of the United States by comparing the results to an inventory of CO2 fluxes. Statistics from densely monitored crop production, consisting primarily of corn and soybeans, provided the backbone of a well studied bottom‐up inventory flux estimate that was used to evaluate the atmospheric inversion results. Estimates were compared to the inventory from three different inversion systems, representing spatial scales varying from high resolution mesoscale (PSU), to continental (CSU) and global (CarbonTracker), coupled to different transport models and optimization techniques. The inversion‐based mean CO2‐C sink estimates were generally slightly larger, 8–20% for PSU, 10–20% for CSU, and 21% for CarbonTracker, but statistically indistinguishable, from the inventory estimate of 135 TgC. While the comparisons show that the MCI region‐wide C sink is robust across inversion system and spatial scale, only the continental and mesoscale inversions were able to reproduce the spatial patterns within the region. In general, the results demonstrate that inversions can recover CO2 fluxes at sub‐regional scales with a relatively high density of CO2 observations and adequate information on atmospheric transport in the region.  相似文献   
917.
Increasing reactive nitrogen (N) input has been recognized as one of the important factors influencing climate system through affecting the uptake and emission of greenhouse gases (GHG). However, the magnitude and spatiotemporal variations of N‐induced GHG fluxes at regional and global scales remain far from certain. Here we selected China as an example, and used a coupled biogeochemical model in conjunction with spatially explicit data sets (including climate, atmospheric CO2, O3, N deposition, land use, and land cover changes, and N fertilizer application) to simulate the concurrent impacts of increasing atmospheric and fertilized N inputs on balance of three major GHGs (CO2, CH4, and N2O). Our simulations showed that these two N enrichment sources in China decreased global warming potential (GWP) through stimulating CO2 sink and suppressing CH4 emission. However, direct N2O emission was estimated to offset 39% of N‐induced carbon (C) benefit, with a net GWP of three GHGs averaging ?376.3 ± 146.4 Tg CO2 eq yr?1 (the standard deviation is interannual variability of GWP) during 2000–2008. The chemical N fertilizer uses were estimated to increase GWP by 45.6 ± 34.3 Tg CO2 eq yr?1 in the same period, and C sink was offset by 136%. The largest C sink offset ratio due to increasing N input was found in Southeast and Central mainland of China, where rapid industrial development and intensively managed crop system are located. Although exposed to the rapidly increasing N deposition, most of the natural vegetation covers were still showing decreasing GWP. However, due to extensive overuse of N fertilizer, China's cropland was found to show the least negative GWP, or even positive GWP in recent decade. From both scientific and policy perspectives, it is essential to incorporate multiple GHGs into a coupled biogeochemical framework for fully assessing N impacts on climate changes.  相似文献   
918.
Understanding the direct and indirect effects of elevated [CO2] and temperature on insect herbivores and how these factors interact are essential to predict ecosystem‐level responses to climate change scenarios. In three concurrent glasshouse experiments, we measured both the individual and interactive effects of elevated [CO2] and temperature on foliar quality. We also assessed the interactions between their direct and plant‐mediated effects on the development of an insect herbivore of eucalypts. Eucalyptus tereticornis saplings were grown at ambient or elevated [CO2] (400 and 650 μmol mol?1 respectively) and ambient or elevated ( + 4 °C) temperature for 10 months. Doratifera quadriguttata (Lepidoptera: Limacodidae) larvae were feeding directly on these trees, on their excised leaves in a separate glasshouse, or on excised field‐grown leaves within the temperature and [CO2] controlled glasshouse. To allow insect gender to be determined and to ensure that any sex‐specific developmental differences could be distinguished from treatment effects, insect development time and consumption were measured from egg hatch to pupation. No direct [CO2] effects on insects were observed. Elevated temperature accelerated larval development, but did not affect leaf consumption. Elevated [CO2] and temperature independently reduced foliar quality, slowing larval development and increasing consumption. Simultaneously increasing both [CO2] and temperature reduced these shifts in foliar quality, and negative effects on larval performance were subsequently ameliorated. Negative nutritional effects of elevated [CO2] and temperature were also independently outweighed by the direct positive effect of elevated temperature on larvae. Rising [CO2] and temperature are thus predicted to have interactive effects on foliar quality that affect eucalypt‐feeding insects. However, the ecological consequences of these interactions will depend on the magnitude of concurrent temperature rise and its direct effects on insect physiology and feeding behaviour.  相似文献   
919.
The growing economic and ecological damage associated with biological invasions, which will likely be exacerbated by climate change, necessitates improved projections of invasive spread. Generally, potential changes in species distribution are investigated using climate envelope models; however, the reliability of such models has been questioned and they are not suitable for use at local scales. At this scale, mechanistic models are more appropriate. This paper discusses some key requirements for mechanistic models and utilises a newly developed model (PSS[gt]) that incorporates the influence of habitat type and related features (e.g., roads and rivers), as well as demographic processes and propagule dispersal dynamics, to model climate induced changes in the distribution of an invasive plant (Gunnera tinctoria) at a local scale. A new methodology is introduced, dynamic baseline benchmarking, which distinguishes climate‐induced alterations in species distributions from other potential drivers of change. Using this approach, it was concluded that climate change, based on IPCC and C4i projections, has the potential to increase the spread‐rate and intensity of G. tinctoria invasions. Increases in the number of individuals were primarily due to intensification of invasion in areas already invaded or in areas projected to be invaded in the dynamic baseline scenario. Temperature had the largest influence on changes in plant distributions. Water availability also had a large influence and introduced the most uncertainty in the projections. Additionally, due to the difficulties of parameterising models such as this, the process has been streamlined by utilising methods for estimating unknown variables and selecting only essential parameters.  相似文献   
920.
The impact of global changes on food security is of serious concern. Breeding novel crop cultivars adaptable to climate change is one potential solution, but this approach requires an understanding of complex adaptive traits for climate‐change conditions. In this study, plant growth, nitrogen (N) uptake, and yield in relation to climatic resource use efficiency of nine representative maize cultivars released between 1973 and 2000 in China were investigated in a 2‐year field experiment under three N applications. The Hybrid‐Maize model was used to simulate maize yield potential in the period from 1973 to 2011. During the past four decades, the total thermal time (growing degree days) increased whereas the total precipitation and sunshine hours decreased. This climate change led to a reduction of maize potential yield by an average of 12.9% across different hybrids. However, the potential yield of individual hybrids increased by 118.5 kg ha?1 yr?1 with increasing year of release. From 1973 to 2000, the use efficiency of sunshine hours, thermal time, and precipitation resources increased by 37%, 40%, and 41%, respectively. The late developed hybrids showed less reduction in yield potential in current climate conditions than old cultivars, indicating some adaptation to new conditions. Since the mid‐1990s, however, the yield impact of climate change exhibited little change, and even a slight worsening for new cultivars. Modern breeding increased ear fertility and grain‐filling rate, and delayed leaf senescence without modification in net photosynthetic rate. The trade‐off associated with delayed leaf senescence was decreased grain N concentration rather than increased plant N uptake, therefore N agronomic efficiency increased simultaneously. It is concluded that modern maize hybrids tolerate the climatic changes mainly by constitutively optimizing plant productivity. Maize breeding programs in the future should pay more attention to cope with the limiting climate factors specifically.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号