首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   21篇
  国内免费   54篇
  2023年   1篇
  2022年   6篇
  2021年   12篇
  2020年   15篇
  2019年   5篇
  2018年   9篇
  2017年   8篇
  2016年   7篇
  2015年   12篇
  2014年   9篇
  2013年   20篇
  2012年   14篇
  2011年   24篇
  2010年   20篇
  2009年   23篇
  2008年   18篇
  2007年   13篇
  2006年   22篇
  2005年   22篇
  2004年   20篇
  2003年   12篇
  2002年   18篇
  2001年   7篇
  2000年   8篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1950年   1篇
排序方式: 共有346条查询结果,搜索用时 31 毫秒
21.
The influence of three different temperatures on developmental time and sex ratio was investigated in the bisexual Thysanoptera species Frankliniella occidentalis. Increasing temperatures decreased developmental time and induced a more female biased sex ratio. Remarkably, there are second instars with a prolonged developmental time requiring the same number of hours as the shortest developmental time from egg to adult. Arrhenotokous reproduction in this species is based on haplodiploidy, with virgin females producing male offspring exclusively. However, at all three temperatures tested, about 0.5% of offspring from unfertilized eggs were females. The presence of Wolbachia could not be detected in Western flower thrips and can be excluded as influencing reproduction in this species.  相似文献   
22.
Bemisia tabaci, an invasive pest that causes crop damage worldwide, is a highly differentiated species complex, divided into biotypes that have mainly been defined based on mitochondrial DNA sequences. Although endosymbionts can potentially induce population differentiation, specialization and indirect selection on mtDNA, studies have largely ignored these influential passengers in B. tabaci, despite as many as seven bacterial endosymbionts have been identified. Here, we investigate the composition of the whole bacterial community in worldwide populations of B. tabaci, together with host genetic differentiation, focusing on the invasive B and Q biotypes. Among 653 individuals studied, more than 95% of them harbour at least one secondary endosymbiont, and multiple infections are very common. In addition, sequence analyses reveal a very high diversity of facultative endosymbionts in B. tabaci, with some bacterial genus being represented by more than one strain. In the B and Q biotypes, nine different strains of bacteria have been identified. The mtDNA‐based phylogeny of B. tabaci also reveals a very high nucleotide diversity that partitions the two ITS clades (B and Q) into six CO1 genetic groups. Each genetic group is in linkage disequilibrium with a specific combination of endosymbionts. All together, our results demonstrate the rapid dynamics of the bacterial endosymbiont–host associations at a small evolutionary scale, questioning the role of endosymbiotic communities in the evolution of the Bemisia tabaci species complex and strengthening the need to develop a metacommunity theory of inherited endosymbionts.  相似文献   
23.
Wolbachia are endosymbiotic bacteria that may alter the reproductive mechanisms of arthropod hosts. Eusocial termites provide considerable scope for Wolbachia studies owing to their ancient origin, their great diversity and their considerable ecological, biological and behavioral plasticity. This article describes the phylogenetic distribution of Wolbachia infecting termites of the Cubitermes genus, which are particularly abundant soil-feeders in equatorial Africa. Fourteen colonies of the Cubitermes sp. affinis subarquatus complex of species were screened using five bacterial genes (wsp, ftsZ, coxA, fbpA and 16S rRNA genes) and a striking diversity of Wolbachia strains was identified within these closely related species. In the host complex, three Wolbachia variants were found that were not in the super groups usually reported for termites (F and H), each infecting one or two Cubitermes species.  相似文献   
24.
Eggs of leaf beetles of the tribe Galerucini, subfamily Galerucinae, contain polyketides that are unusual in insects: 1,8-dihydroxylated anthraquinones (chrysazin, chrysophanol) and anthrones (dithranol, chrysarobin) deterring predators. The host plants do not contain these compounds. In the present study, we tested the hypothesis that the beetles, but not bacterial or fungal microorganisms living as endosymbionts within the beetles, produce the anthraquinones. The tansy leaf beetle Galeruca tanaceti was used as Galerucini model organism. It was treated with antimicrobial substances to eradicate the microorganisms and inhibit the hypothesised endosymbiotic anthraquinone production. Despite treatment, female G. tanaceti laid eggs containing anthraquinones. Although broad spectrum antimicrobials were used, it cannot be excluded that the potential endosymbiotic microorganisms are resistant. Given that the hypothesised endosymbionts are transferred via the eggs from one generation to the next, bacterial or fungal DNA was expected to be present in the eggs. With the exception of Wolbachia pipientis, however, no further 16S rDNA from bacteria responsible for anthraquinone biosynthesis was detected in eggs of untreated beetles. Because Wolbachia were also found in closely related anthraquinone-free insects, we exclude these bacteria as producers of the defensive polyketides. Nor was any 18S rDNA from fungi with anthraquinone biosynthetic abilities detected. Our results indicate that anthraquinones and anthrones in eggs of Galerucini are produced by beetle enzymes and not by endosymbiotic microorganisms within the eggs.  相似文献   
25.
Wolbachia are the most abundant bacterial endosymbionts among arthropods. Although maternally inherited, they do not conform to the widespread view that vertical transmission inevitably selects for beneficial symbionts. Instead, Wolbachia are notorious for their reproductive parasitism which, although lowering host fitness, ensures their spread. However, even for reproductive parasites it can pay to enhance host fitness. Indeed, there is a recent upsurge of reports on Wolbachia‐associated fitness benefits. Therefore, the question arises how such instances of mutualism are related to the phenotypes of reproductive parasitism. Here, we review the evidence of Wolbachia mutualisms in arthropods, including both facultative and obligate relationships, and critically assess their biological relevance. Although many studies report anti‐pathogenic effects of Wolbachia, few actually prove these effects to be relevant to field conditions. We further show that Wolbachia frequently have beneficial and detrimental effects at the same time, and that reproductive manipulations and obligate mutualisms may share common mechanisms. These findings undermine the idea of a clear‐cut distinction between Wolbachia mutualism and parasitism. In general, both facultative and obligate mutualisms can have a strong, and sometimes unforeseen, impact on the ecology and evolution of Wolbachia and their arthropod hosts. Acknowledging this mutualistic potential might be the key to a better understanding of some unresolved issues in the study of Wolbachia–host interactions.  相似文献   
26.
Wolbachia detection: an assessment of standard PCR protocols   总被引:1,自引:0,他引:1  
Wolbachia is a large monophyletic genus of intracellular bacteria, traditionally detected using PCR assays. Its considerable phylogenetic diversity and impact on arthropods and nematodes make it urgent to assess the efficiency of these screening protocols. The sensitivity and range of commonly used PCR primers and of a new set of 16S primers were evaluated on a wide range of hosts and Wolbachia strains. We show that certain primer sets are significantly more efficient than others but that no single protocol can ensure the specific detection of all known Wolbachia infections.  相似文献   
27.
Mosquito species of the Aedes (Stegomyia) scutellaris (Walker) group (Diptera: Culicidae) are distributed across many islands of the South Pacific and include major regional vectors of filariasis, such as Aedes polynesiensis (Marks). Analysis of populations of Ae. polynesiensis at the extremes of its range, from Fiji and from Moorea, French Polynesia, using the rDNA ITS2 (internal transcribed spacer 2) region and six microsatellite markers showed considerable genetic differentiation between them (F(ST) = 0.298-0.357). Phylogenetic analysis of the Wolbachia endosymbionts in three members of the complex revealed that based on the wsp gene they are all very similar and belong to the Mel subgroup of the A clade, closely related to the Wolbachia strain present in the gall wasp Callyrhytis glandium (Giraud) (Hymenoptera: Cynipidae). By contrast they are only distantly related to the A-clade Wolbachia in Aedes albopictus (Skuse), a species closely allied to the Ae. scutellaris group. There was very low differentiation between the Wolbachia in the Moorea and Fiji populations of Ae. polynesiensis.  相似文献   
28.
Male-killing bacteria are generally thought to attain low to intermediate prevalence in natural populations, with only mild effects on the host population sex ratio. This view was recently challenged by reports of extremely high infection frequencies in three butterfly species, raising the prospect that male killers, by making males rare, might drive many features of host ecology and evolution. To assess this hypothesis, it is necessary to evaluate how often male killers actually produce a highly female-biased population sex ratio in nature, which requires both high prevalence of infection and high penetrance of action. To this end, we surveyed South Pacific and Southeast Asian populations of Hypolimnas bolina, a butterfly in which extreme prevalence of male-killing Wolbachia bacteria has recently been recorded. Our results indicate that highly female-biased populations are common in Polynesia, with 6 out of 12 populations studied having in excess of 70% of females infected with a fully efficient male killer. However, heterogeneity is extreme in Polynesia, with the male-killing Wolbachia absent from three populations. In contrast to the Polynesian situation, Wolbachia does not kill males in any of the three Southeast Asian populations studied, despite its very high prevalence there. We conclude that male killers are likely to have significant ongoing ecological and evolutionary impact in 6 of the 15 populations surveyed. The causes and consequences of the observed spatial variation are discussed with respect to host resistance evolution, host ecology and interference with additional symbionts.  相似文献   
29.
Wolbachia is a group of maternally inherited endosymbiotic bacteria that infect and induce cytoplasmic incompatibility (CI) in a wide range of arthropods. In contrast to other species, the mosquito Culex pipiens displays an extremely high number of CI types suggesting differential infection by multiple Wolbachia strains. Attempts so far failed to detect Wolbachia polymorphism that might explain this high level of CI diversity found in C. pipiens populations. Here, we establish that Wolbachia infection is near to or at fixation in worldwide populations of the C. pipiens complex. Wolbachia polymorphism was addressed by sequence analysis of the Tr1 gene, a unique transposable element of the IS5 family, which allowed the identification of five C. pipiens Wolbachia strains, differing either by nucleotide substitution, presence or absence pattern, or insertion site. Sequence analysis also showed that recombination, transposition and superinfection occurred at very low frequencies. Analysis of the geographical distributions of each Wolbachia strain among C. pipiens populations indicated a strong worldwide differentiation independent from mosquito subspecies type, except in the UK. The availability of this polymorphic marker now opens the way to investigate evolution of Wolbachia populations and CI dynamics, in particular in regions where multiple crossing types coexist among C. pipiens populations.  相似文献   
30.
The success of obligate endosymbiotic Wolbachia infections in insects is due in part to cytoplasmic incompatibility (CI), whereby Wolbachia bacteria manipulate host reproduction to promote their invasion and persistence within insect populations. The observed diversity of CI types raises the question of what the evolutionary pathways are by which a new CI type can evolve from an ancestral type. Prior evolutionary models assume that Wolbachia exists within a host individual as a clonal infection. While endosymbiotic theory predicts a general trend toward clonality, Wolbachia provides an exception in which there is selection to maintain diversity. Here, evolutionary trajectories are discussed that assume that a novel Wolbachia variant will co-exist with the original infection type within a host individual as a superinfection. Relative to prior models, this assumption relaxes requirements and allows additional pathways for the evolution of novel CI types. In addition to describing changes in the Wolbachia infection frequency associated with the hypothesized evolutionary events, the predicted impact of novel CI variants on the host population is also described. This impact, resulting from discordant evolutionary interests of symbiont and host, is discussed as a possible cause of Wolbachia loss from the host population or host population extinction. The latter is also discussed as the basis for an applied strategy for the suppression of insect pest populations. Model predictions are discussed relative to a recently published Wolbachia genome sequence and prior characterization of CI in naturally and artificially infected insects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号