首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   3篇
  国内免费   2篇
  2022年   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   8篇
  2012年   2篇
  2011年   8篇
  2010年   3篇
  2009年   7篇
  2008年   6篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   6篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
排序方式: 共有76条查询结果,搜索用时 31 毫秒
71.
72.
73.
Suppression of wing fate and specification of haltere fate in Drosophila by the homeotic gene Ultrabithorax is a classical example of Hox regulation of serial homology (Lewis, E.B. 1978. Nature 276, 565-570) and has served as a paradigm for understanding homeotic gene function. We have used DNA microarray analyses to identify potential targets of Ultrabithorax function during haltere specification. Expression patterns of 18 validated target genes and functional analyses of a subset of these genes suggest that down-regulation of both anterior-posterior and dorso-ventral signaling is critical for haltere fate specification. This is further confirmed by the observation that combined over-expression of Decapentaplegic and Vestigial is sufficient to override the effect of Ubx and cause dramatic haltere-to-wing transformations. Our results also demonstrate that analysis of the differential development of wing and haltere is a good assay system to identify novel regulators of key signaling pathways.  相似文献   
74.
One of the major questions in evolutionary developmental neurobiology is how neuronal networks have been adapted to different morphologies and behaviour during evolution. Analyses of neurogenesis in representatives of all arthropod species have revealed evolutionary modifications of various developmental mechanisms. Among others, variations can be seen in mechanisms that are associated with changes in neural progenitor identity, which in turn determines the neuronal subtype of their progeny. Comparative analyses of the molecular processes that underlie the generation of neuronal identity might therefore uncover the steps of evolutionary changes that eventually resulted in modifications in neuronal networks. Here we address this question in the flour beetle Tribolium castaneum by analyzing and comparing the development and expression profile of neural stem cells (neuroblasts) to the published neuroblast map of the fruit fly Drosophila melanogaster. We show that substantial changes in the identity of neuroblasts have occurred during insect evolution. In almost all neuroblasts the relative positions in the ventral hemi-neuromeres are conserved; however, in over half of the neuroblasts the time of formation as well as the gene expression profile has changed. The neuroblast map presented here can be used for future comparative studies on individual neuroblast lineages in D. melanogaster and T. castaneum and additional markers and information on lineages can be added. Our data suggest that evolutionary changes in the expression profile of individual neuroblasts might have contributed to the evolution of neural diversity and subsequently to changes in neuronal networks in arthropod.  相似文献   
75.
 Arthropods are the most diverse and speciose group of organisms on earth. A key feature in their successful radiation is the ease with which various appendages become readily adapted to new functions in novel environments. Arthropod limbs differ radically in form and function, from unbranched walking legs to multibranched swimming paddles. To uncover the developmental and genetic mechanisms underlying this diversification in form, we ask whether a three-signal model of limb growth based on Drosophila experiments is used in the development of arthropod limbs with variant shape. We cloned a Wnt-1 ortholog (Tlwnt-1) from Triops longicaudatus, a basal crustacean with a multibranched limb. We examined the mRNA in situ hybridization pattern during larval development to determine whether changes in wg expression are correlated with innovation in limb form. During larval growth and segmentation Tlwnt-1 is expressed in a segmentally reiterated pattern in the trunk. Unexpectedly, this pattern is restricted to the ventral portion of the epidermis. During early limb formation the single continuous stripe of Tlwnt-1 expression in each segment becomes ventrolaterally restricted into a series of shorter stripes. Some but not all of these shorter stripes correspond to what becomes the ventral side of a developing limb branch. We conclude that the Drosophila model of limb development cannot explain all types of arthropod proximodistal outgrowths, and that the multibranched limb of Triops develops from an early reorganization of the ventral body wall. In Triops, Tlwnt-1 plays a semiconservative role similar to that played by Drosophila wingless in segmentation and limb formation, and morphological innovation in limb form arises in part through an early modulation in the expression of the Tlwnt-1 gene. Received: 22 September 1998 / Accepted: 12 January 1999  相似文献   
76.
One function of the Wingless signaling pathway is to determine the naked, cuticle cell fate choice in the trunk epidermis of Drosophila larvae. The zinc finger protein Teashirt binds to the transactivator domain of Armadillo to modulate Wingless signaling output in the embryonic trunk and contributes to the naked cell fate choice. The Hedgehog pathway is also necessary for the correct specification of larval epidermal cell fate, which signals via the zinc finger protein, Cubitus interruptus. Here, we show that Cubitus interruptus also has a Wingless-independent function, which is required for the specification of the naked cell fate; previously, it had been assumed that Ci induces naked cuticle exclusively by regulation of wg. Wg and Hh signaling pathways may be acting combinatorially in the same, or individually in different, cells for this process, by regulating common sets of target genes. First, the loss of the naked cuticular phenotype in embryos lacking cubitus interruptus activity is very similar to that induced by a late loss of Wingless function. Second, overexpression of Cubitus interruptus causes the suppression of denticles (as Wingless does) in absence of Wingless activity in the anterior trunk. Using epistasis experiments, we conclude that different combinations of the three proteins Teashirt, Cubitus interruptus, and Armadillo are employed for the specification of naked cuticle at distinct positions both along the antero-posterior axis and within individual trunk segments. Finally, biochemical approaches suggest the existence of protein complexes consisting of Teashirt, Cubitus interruptus, and Armadillo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号