首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3846篇
  免费   221篇
  国内免费   657篇
  4724篇
  2024年   6篇
  2023年   54篇
  2022年   126篇
  2021年   106篇
  2020年   134篇
  2019年   129篇
  2018年   106篇
  2017年   134篇
  2016年   146篇
  2015年   117篇
  2014年   154篇
  2013年   340篇
  2012年   144篇
  2011年   239篇
  2010年   160篇
  2009年   289篇
  2008年   241篇
  2007年   215篇
  2006年   187篇
  2005年   182篇
  2004年   169篇
  2003年   171篇
  2002年   147篇
  2001年   133篇
  2000年   102篇
  1999年   101篇
  1998年   81篇
  1997年   58篇
  1996年   55篇
  1995年   79篇
  1994年   78篇
  1993年   52篇
  1992年   60篇
  1991年   59篇
  1990年   19篇
  1989年   14篇
  1988年   9篇
  1987年   12篇
  1986年   14篇
  1985年   32篇
  1984年   26篇
  1983年   9篇
  1982年   8篇
  1980年   4篇
  1979年   9篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1974年   1篇
  1973年   3篇
排序方式: 共有4724条查询结果,搜索用时 0 毫秒
11.
Abstract The comparative chromosomal locations of polymeric β-fructosidase SUC genes have been determined by Southern blot hybridization with the SUC2 probe in 91 different strains of Saccharomyces cerevisiae . Most of the strains exhibited a single SUC2 gene, but in some strains two or three SUC genes were found. All Suc strains carried a silent suc20 sequence. The accumulation of SUC genes was observed in populations derived from sources containing sucrose and seems to be absent in strains from sources promoting the MEL gene.  相似文献   
12.
自养黄杆菌合成羟基丁酸和羟基戊酸共聚体的发酵研究   总被引:14,自引:2,他引:12  
采用本实验室从土壤中分离到的一株自养黄杆菌进行了羟基丁酸和羟基戊酸共聚体〔P(HB-co-HV)〕的发酵试验。实验结果表明,该菌株是自养黄杆菌葡萄糖运输突变株,可以葡萄糖、果糖、蔗糖、麦芽糖、乙酸盐、乳酸盐和苹果酸盐作为唯一碳源,尤以葡萄糖和果糖效果最佳。硫酸铵、氯化铵和蛋白胨等不同氮源不影响其生长,却影响细胞中P(HB-co-HV)的含量和P(HB-co-HV)中HV/HB的比例。应用两阶段控制方式,经42h的补料分批发酵,细胞浓度达34.9g·L~(-1),P(HB-co-HV)浓度达25.28g·L~(-1)。细胞和P(HB-co-HV)生产速率系数分别为0.83g·L~(-1)”·h~(-1)和0.61g·L~(-1)·h~(-1)。以基质为基准的细胞得率系数(Yx/s)、产物得率系数(Yp/s)和以干细胞为基准的产物得率系数(Yp/x)分别为0.283(g/g)、0.174(g/g)和0.73(g/g)。改变培养基中碳氮源组分可将P(HB-co-HV)中HB的含量调节在24%~78%之间。  相似文献   
13.
Production of fuel alcohol from oats by fermentation   总被引:1,自引:0,他引:1  
Very high gravity (>30 g dissolved solids per 100 ml) mashes were prepared from hulled and hulless oats and fermented at 20° C with active dry yeast to produce ethanol. Excessive viscosity development during mashing was prevented by hydrolyzing -glucan with crude preparations of -glucanase or Biocellulase. Both these preparations possessed endo--glucanase activity. By using these enzymes and by decreasing the water to grain ratio, very high gravity mashes with low viscosity were prepared. Unlike wheat and barley mashes, oat mashes contained sufficient amounts of assimilable nitrogen to promote a fast rate of fermentation. The free amino nitrogen (FAN) content of oat mash could be predicted by the equation, mg FAN L–1=8.9n wheren is the number of grams of dissolved solids in 100 ml of mash supernatant fluid. Ethanol yields of 353.2±3.7 L and 317.6±1.3 L were obtained per tonne (dry weight basis) of hulless (59.8% starch) and hulled (50.8% starch) oats respectively. The efficiency of conversion of starch to ethanol was the same in normal and very high gravity mashes.  相似文献   
14.
Metabolic interactions between anaerobic bacteria in methanogenic environments   总被引:29,自引:0,他引:29  
In methanogenic environments organic matter is degraded by associations of fermenting, acetogenic and methanogenic bacteria. Hydrogen and formate consumption, and to some extent also acetate consumption, by methanogens affects the metabolism of the other bacteria. Product formation of fermenting bacteria is shifted to more oxidized products, while acetogenic bacteria are only able to metabolize compounds when methanogens consume hydrogen and formate efficiently. These types of metabolic interaction between anaerobic bacteria is due to the fact that the oxidation of NADH and FADH2 coupled to proton or bicarbonate reduction is thermodynamically only feasible at low hydrogen and formate concentrations. Syntrophic relationships which depend on interspecies hydrogen or formate transfer were described for the degradation of e.g. fatty acids, amino acids and aromatic compounds.  相似文献   
15.
Abstract: Changes of the main hydrodynamic and oxygen transfer parameters during Aspergillus niger cultivation in an external-loop air-lift bioreactor of 200 dm3 operating capacity were investigated. The final average concentrations of biomass and citric acid obtained in batch fermentations were about 17 g 1-1 and 90 g 1-1, respectively. Significant influence of the increasing biomass concentration on the rheological properties of the broth and operating parameters was found. Volumetric oxygen transfer coefficient. k L a , was found to be dependent on the apparent viscosity of the broth with an exponent of -0.984.  相似文献   
16.
An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts.Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called Crabtree effect probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect inS. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast.S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions.Non-Saccharomyces yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeastCandida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.  相似文献   
17.
The ability to genetically alter the product-formation capabilities of Clostridium acetobutylicum is necessary for continued progress toward industrial production of the solvents butanol and acetone by fermentation. Batch fermentations at pH 4.5, 5.5, or 6.5 were conducted using C. acetobutylicum ATCC 824 (pFNK6). Plasmid pFNK6 contains a synthetic operon (the "ace operon") in which the three homologous acetone-formation genas (adc, ctfA, and ctfB) are transcribed from the adc promoter. The corresponding enzymes (acetoacetate decarboxylase and CoA-transferase) were best expressed in pH 4.5 fermentations. However, the highest levels of solvents were attained at pH 5.5. Relative to the plasmid-free control strain at pH 5.5, ATCC 824 (pFNK6) produced 95%, 37%, and 90% higher final concentrations of acetone, butanol, and ethanol, respectively; a 50% higher yield (g/g) of solvents on glucose; and a 22-fold lower mass of residual carboxylic acids. At all pH values, the acetone-formation enzymes were expressed earlier with ATCC 824 (pFNK6) than in control fermentations, leading to earlier induction of acetone formation. Furthermore, strain ATCC 824 (pFNK6) produced butanol significantly earlier in the fermentation and produced significant levels of solvents at pH 6.5. Only trace levels of solvents were produced by strain ATCC 824 at pH 6.5. Compared with ATCC 824, a plasmid-control strain containing a vector without the ace operon also produced higher levels of solvents [although lower than those of strain ATCC 824 (pFNK6)] and lower levels of acids. Strains containing plasmid-borne derivatives of the ace operon, in which either the acetoacetate decarboxylase or CoA-transferase alone were expressed at elevated levels, produced acids and solvents at levels similar to those of the plasmid-control strain. (c) 1993 John Wiley & Sons, Inc.  相似文献   
18.
Summary The rate of ethanolic fermentation of high gravity wheat mashes bySaccharomyces cerevisiae was increased by nitrogen sources such as ammonium sulfate or arginine. This stimulation was mediated through increased proliferation of cells. Large quantities of proline, however, were excreted by the yeast into the medium when arginine was added as a nutrient supplement. The amount of proline excreted was proportional to the concentration of arginine supplied. Nitrogen sources such as ammonium sulfate or lysine enhanced the production of proline from arginine and its excretion into the medium. Results show that the stimulation of very high gravity fermentation by arginine is not merely through provision of a source of nitrogen but also because it serves as a precursor for the production of proline, a compound which may play a significant role in alleviating the effects of osmotic stress.  相似文献   
19.
Exopectinase (exo-p) and endopectinase (endo-p) production by Aspergillus niger CH4 in solid state culture was studied at initial glucose concentrations of 100, 250, 350 and 450 g/l. The highest activity of exo-p (35 U/g) was produced at 72 and 120 h in the medium containing 100 and 250 g glucose/l, respectively. The maximum endo-p activity (9 U/g) was produced at 72 h in the medium with 250 g glucose/l. The reduction in pectinase production at 350 and 450 g/l initial glucose concentration was due neither to repression of the synthesis of the enzyme nor to the glucose consumption rate of the strain but due to a drastic drop in pH of the medium.S. Solis-Pereyra, E. Favela-Torres, M. Gutiérrez-Rojas, G. Saucedo-Castañeda and G. Viniegra-González are with the Departamento de Biotecnologia, Universidad Autónoma Metropolitana, A.P. 55-535, C.P. 09340, México D.F., México; S. Roussos is with the Laboratoire de Biotechnologie, ORSTOM, B.P. 5045, 34032, Montpellier Cedex, France, and P. Gunasekaran is with the Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625-021, India.  相似文献   
20.
Production of a lipopeptide antibiotic, surfactin, in solid state fermentation (SSF) on soybean curd residue, Okara, as a solid substrate was carried out using Bacillus subtilis MI113 with a recombinant plasmid pC112, which contains lpa-14, a gene related to surfactin production cloned at our laboratory from a wild-type surfactin producer, B. subtilis RB14. The optimal moisture content and temperature for the production of surfactin were 82% and 37 degrees C, respectively. The amount of surfactin produced by MI113 (pC112) was as high as 2.0 g/kg wet weight, which was eight times as high as that of the original B. subtilis RB14 at the optimal temperature for surfactin production, 30 degrees C. Although the stability of the plasmid showed a similar pattern in both SSF and submerged fermentation (SMF), production of surfactin in SSF was 4-5 times more efficient than in SMF. (c) 1995 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号