首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   385篇
  免费   29篇
  国内免费   7篇
  2024年   4篇
  2023年   4篇
  2022年   3篇
  2021年   4篇
  2020年   8篇
  2019年   9篇
  2018年   7篇
  2017年   5篇
  2016年   12篇
  2015年   12篇
  2014年   14篇
  2013年   15篇
  2012年   12篇
  2011年   11篇
  2010年   10篇
  2009年   32篇
  2008年   23篇
  2007年   16篇
  2006年   19篇
  2005年   16篇
  2004年   22篇
  2003年   18篇
  2002年   16篇
  2001年   12篇
  2000年   5篇
  1999年   8篇
  1998年   7篇
  1997年   5篇
  1996年   9篇
  1995年   7篇
  1994年   5篇
  1993年   12篇
  1992年   10篇
  1991年   4篇
  1990年   4篇
  1989年   10篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   6篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有421条查询结果,搜索用时 15 毫秒
91.
Photosynthetic reaction centers, isolated and purified from the facultative phototrophic bacterium Chloroflexus aurantiacus, were immobilized in optically transparent lipidic cubic phases composed of 42% (w/w) 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine and 58% (w/w) water. The immobilized photosynthetic protein retains its native properties, as indicated by visible and circular dichroic spectra. The ground state visible spectrum of the immobilized reaction centers is very similar to the corresponding spectrum in aqueous solution, indicating that the protein pigments are not extracted into the lipidic regions of the cubic phase. The secondary structure of the protein is maintained in the immobilized state, as determined by far-UV circular dichroism spectroscopy in the 200- to 250-nm range. Moreover, immobilized reaction centers retain their photochemical activity: a reversible photo-oxidation of the primary electron donor (P) is seen upon continuous illumination. Furthermore, the entrappment of reaction centers does not affect the kinetics of charge recombination between the photo-oxidized primary donor (P(+)) and the photoreduced primary quinone acceptor, generated by a short flash of light. Reaction centers devoided of the secondary quinone acceptor can be easily reconstituted in cubic phases by means of their coimmobilization with 1,4-naphtoquinone. Indeed, the kinetics for charge recombination in reconstituted reaction centers is dramatically slower than the corresponding kinetics in the unreconstituted protein. Interestingly, immobilized reaction centers are significantly stabilized as compared with reaction centers in aqueous solution: the integrity of the protein in the cubic phase is maintained for at least 5 months, whereas in water solution 50% of the activity is lost within 2 months. (c) 1995 John Wiley & Sons, Inc.  相似文献   
92.
Copper(II) complexes of (S)-phenylalaninamide have been successfully used for the direct enantiomeric separation of unmodified (R,S)-α-hydroxy acids in reversed phase high-performance liquid chromatography (RP-HPLC). The effect of various parameters (pH, eluent polarity, selector concentration) on enantioselectivity is discussed. Evidence is provided that a mechanism of ligand exchange is actually occurring during the chromatographic separation. The method is very convenient and easy to use, and the chiral selector is commercially available and can be recovered at the end of the analysis. A conventional achiral RP-ODS-2 column is used and no pretreatment of the samples is required. This method allows the accurate determination of the enantiomeric excess of α-hydroxy acids in synthetic and biological samples. © 1995 Wiley-Liss, Inc.  相似文献   
93.
94.
The differential distribution of lipids between apical and basolateral membranes is necessary for many epithelial cell functions, but how this characteristic membrane organization is integrated within the polarity network during ductal organ development is poorly understood. Here we quantified membrane order in the gut, kidney and liver ductal epithelia in zebrafish larvae at 3–11 days post fertilization (dpf) with Laurdan 2‐photon microscopy. We then applied a combination of Laurdan imaging, antisense knock‐down and analysis of polarity markers to understand the relationship between membrane order and apical‐basal polarity. We found a reciprocal relationship between membrane order and the cell polarity network. Reducing membrane condensation by exogenously added oxysterol or depletion of cholesterol reduced apical targeting of the polarity protein, aPKC. Conversely, using morpholino knock down in zebrafish, we found that membrane order was dependent upon the Crb3 and Par3 polarity protein expression in ductal epithelia. Hence our data suggest that the biophysical property of membrane lipid packing is a regulatory element in apical basal polarity.  相似文献   
95.
Chromatographic separation of the enantiomers of parent compounds dimethyl α‐hydroxyallyl phosphonate 1a and 1‐(dimethoxyphosphoryl) allyl methyl carbonate 1b was demonstrated by high‐performance liquid chromatography (HPLC) using Chiralpak AS‐H and ad ‐H chiral stationary phases (CSP), respectively, using a combination of UV, polarimetric, and refractive index detectors. A comparison was made of the separation efficiency and elution order of enantiomeric α‐hydroxyallyl phosphonates and their carbonate derivatives on commercially available polysaccharide AS, ad , OD, IC‐3, and Whelk‐O 1 CSPs. In general, the α‐hydroxyallyl phosphonates were resolved on the AS‐H CSP, whereas the carbonate derivatives 1b and 2b were preferentially resolved on the ad ‐H CSP. The impact of aryl substitution on the resolution of analytes 1d , 1e , 1f and 2 , 3 , 4 , 5 , 6 , 7 , 8 was evaluated. Thermodynamic parameters determined for enantioselective adsorption hydroxyphosphonates 1a and 4 on the AS‐H CSP and carbonate 1b on the ad ‐H CSP demonstrated enthalpic control for separation of the enantiomers. Chirality 28:656–662, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
96.
Septin proteins form highly conserved cytoskeletal filaments composed of hetero-oligomers with strict subunit stoichiometry. Mutations within one hetero-oligomerization interface (the “G” interface) bias the mutant septin toward conformations that are incompatible with filament assembly, causing disease in humans and, in budding yeast cells, temperature-sensitive defects in cytokinesis. We previously found that, when the amount of other hetero-oligomerization partners is limiting, wild-type and G interface-mutant alleles of a given yeast septin “compete” along parallel but distinct folding pathways for occupancy of a limited number of positions within septin hetero-octamers. Here, we synthesize a mathematical model that outlines the requirements for this phenomenon: if a wild-type septin traverses a folding pathway that includes a single rate-limiting folding step, the acquisition by a mutant septin of additional slow folding steps creates an initially large disparity between wild-type and mutant in the cellular concentrations of oligomerization-competent monomers. When the 2 alleles are co-expressed, this kinetic disparity results in mutant exclusion from hetero-oligomers, even when the folded mutant monomer is oligomerization-competent. To test this model experimentally, we first visualize the kinetic delay in mutant oligomerization in living cells, and then narrow or widen the “window of opportunity” for mutant septin oligomerization by altering the length of the G1 phase of the yeast cell cycle, and observe the predicted exacerbation or suppression, respectively, of mutant cellular phenotypes. These findings reveal a fundamental kinetic principle governing in vivo assembly of multiprotein complexes, independent of the ability of the subunits to associate with each other.  相似文献   
97.
Herein, the synthesis of new quaternary layered Na‐based oxides of the type NaxMnyNizFe0.1Mg0.1O2 (0.67≤ x ≤ 1.0; 0.5≤ y ≤ 0.7; 0.1≤ z ≤ 0.3) is described. The synthesis can be tuned to obtain P2‐ and O3‐type as well as mixed P‐/O‐type phases as demonstrated by structural, morphological, and electrochemical properties characterization. Although all materials show good electrochemical performance, the simultaneous presence of the P‐ and O‐type phases is found to have a synergetic effect resulting in outstanding performance of the mixed phase material as a sodium‐ion cathode. The mixed P3/P2/O3‐type material, having an average elemental composition of Na0.76Mn0.5Ni0.3Fe0.1Mg0.1O2, overcomes the specific drawbacks associated with the P2‐ and O3‐type materials, allowing the outstanding electrochemical performance. In detail, the mixed phase material is able to deliver specific discharge capacities of up to 155 mAh g?1 (18 mA g?1) in the potential range of 2.0–4.3 V. In the narrower potential range of 2.5–4.3 V the material exhibits high average discharge potential (3.4 V versus Na/Na+), exceptional average coulombic efficiencies (>99.9%), and extraordinary capacity retention (90.2% after 601 cycles). The unexplored class of P‐/O‐type mixed phases introduces new perspectives for the development of layered positive electrode materials and powerful Na‐ion batteries.  相似文献   
98.
二氧化碳噬纤维菌属(Capnocytophaga,简称Capno)是国外学者近年从人牙菌斑中分离到的新菌属。作者从人的健康和炎性牙周龈下菌斑中分离到615株Capno,其鉴定特点如下:革兰氏阳性细梭纤柔杆菌,仅在厌氧环境和含10%CO_2的空气中生长;在BHI血琼脂表面形成典型的“润湿性”菌落,并产生桔黄色色素和特殊的焦糖气味;在含葡萄糖的PYG肉汤中最终pH值<6,琥珀酸和乙酸为主要的代谢酸产物。根据发酵碳水化合物和还原硝酸盐可鉴定本菌属的三个种。  相似文献   
99.
The synthesis and chromatographic evaluation of two novel chiral stationary phases (CSPs) deriving from (S)-tyrosine are reported. The chiral graft has been designed in order to bear both π-acid and π-basic sites, each one being connected to a distinct asymmetric centre. An intramolecular π-π interaction may take place within these CSPs, leading to an energetically favoured conformation of the chiral selector (CS). The enantiorecognition ability of these CSPs was investigated for various classes of either π-acid or π-basic racemates. It is shown that these CSPs are able to separate simultaneously π-acid and π-basic racemates. Finally, chiral recognition mechanisms and mobile phase optimization are discussed.  相似文献   
100.
Trehalose is known to protect some organisms from various stresses due to drought and high temperature. To explore the molecular mechanism of the protective function, the mesomorphic properties of the monoolein-water system, dried in the presence of trehalose, were studied by X-ray diffraction. While, in pure water, two bicontinuous inverse cubic structures (the Pn3m and Ia3d phases) and a lamellar Lα phase exist as a function of concentration, only the Pn3m cubic phase has been detected in concentrated trehalose solutions or in trehalose glasses, even under extremely dry conditions. Depending on the sugar concentration, or after glass dehydration, the Pn3m cubic unit cell decreases to very low values, much below the smaller one observed in pure water. However, as no phase transitions occur, a simple osmotic mechanism can be excluded. An additional stabilization of the lipid phase, arising from interfacial free energy changes due to trehalose-water-lipid direct interactions, and large enough to affect the energetic balance between the Pn3m and the Ia3d cubic phases, evidently occurs. Moreover, no differences in the Pn3m cubic structure were observed when the sugar platelets convert to the glassy state; no apparent structural modifications that can be related to mechanical pressure exerted on the lipid phase have been detected. Received: 5 October 1998 / Accepted: 13 November 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号