首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3689篇
  免费   233篇
  国内免费   109篇
  4031篇
  2024年   7篇
  2023年   49篇
  2022年   42篇
  2021年   92篇
  2020年   99篇
  2019年   99篇
  2018年   118篇
  2017年   69篇
  2016年   94篇
  2015年   101篇
  2014年   185篇
  2013年   380篇
  2012年   124篇
  2011年   175篇
  2010年   134篇
  2009年   182篇
  2008年   188篇
  2007年   208篇
  2006年   178篇
  2005年   151篇
  2004年   158篇
  2003年   158篇
  2002年   116篇
  2001年   107篇
  2000年   105篇
  1999年   106篇
  1998年   89篇
  1997年   64篇
  1996年   64篇
  1995年   66篇
  1994年   57篇
  1993年   37篇
  1992年   23篇
  1991年   19篇
  1990年   18篇
  1989年   19篇
  1988年   19篇
  1987年   13篇
  1986年   13篇
  1985年   23篇
  1984年   19篇
  1983年   7篇
  1982年   18篇
  1981年   14篇
  1980年   4篇
  1979年   10篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1973年   1篇
排序方式: 共有4031条查询结果,搜索用时 15 毫秒
131.
Previous studies have shown that elevated nitric oxide (NO) reduces adhesion in diatom, bacterial and animal cells. This article reports experiments designed to investigate whether elevated NO reduces the adhesion of zoospores of the green alga Ulva, an important fouling species. Surface-normalised values of NO were measured using the fluorescent indicator DAF-FM DA and parallel hydrodynamic measurements of adhesion strength were made. Elevated levels of NO caused by the addition of the exogenous NO donor SNAP reduced spore settlement by 20% and resulted in lower adhesion strength. Addition of the NO scavenger cPTIO abolished the effects of SNAP on adhesion. The strength of attachment and NO production by spores in response to four coatings (Silastic® T2; Intersleek® 700; Intersleek® 900 and polyurethane) shows that reduced adhesion is correlated with an increase in NO production. It is proposed that in spores of Ulva, NO is used as an intracellular signalling molecule to detect how conducive a surface is for settlement and adhesion. The effect of NO on the adhesion of a range of organisms suggests that NO-releasing coatings could have the potential to control fouling.  相似文献   
132.
Significantly higher numbers of zoospores of the fouling, green alga Enteromorpha adhered to silicone elastomers cured by dibutyltin dilaurate (DBTDL) than to identical polymers cured by dibutyltin diacetate (DBTDA). Enhanced zoospore adhesion was shown to be due to the presence of DBTDL and the effect was concentration‐dependent. Further experiments revealed that enhanced zoospore adhesion also occurred to glass coverslips coated with lauric acid (C12) and other saturated fatty acids. The possibility that fatty acids may act as chemical cues (chemoattractants), guiding motile zoospores to the substratum for settlement in the natural environment is discussed. Settlement of other fouling organisms to DBTDL‐cured silicone elastomers is currently being investigated.  相似文献   
133.
The impact of cranberry juice was investigated with respect to the initial adhesion of three isogenic strains of the bacterium Burkholderia cepacia with different extracellular polymeric substance (EPS) producing capacities, viz. a wild-type cepacian EPS producer PC184 and its mutant strains PC184rml with reduced EPS production and PC184bceK with a deficiency in EPS production. Adhesion experiments conducted in a parallel-plate flow chamber demonstrated that, in the absence of cranberry juice, strain PC184 had a significantly higher adhesive capacity compared to the mutant strains. In the presence of cranberry juice, the adhesive capacity of the EPS-producing strain PC184 was largely reduced, while cranberry juice had little impact on the adhesion behavior of either mutant strain. Thermodynamic modeling supported the results from adhesion experiments. Surface force apparatus (SFA) and scanning electron microscope (SEM) studies demonstrated a strong association between cranberry juice components and bacterial EPS. It was concluded that cranberry juice components could impact bacterial initial adhesion by adhering to the EPS and impairing the adhesive capacity of the cells, which provides an insight into the development of novel treatment strategies to block the biofilm formation associated with bacterial infection.  相似文献   
134.
Jarosław Kobak 《Biofouling》2013,29(3):141-150
Abstract

The effects of several factors (shell length, exposure time, substratum orientation in space, illumination, temperature, conspecifics) upon the attachment strength (measured with a digital dynamometer) of the freshwater, gregarious bivalve Dreissena polymorpha were studied under laboratory conditions. A rapid increase in attachment strength was observed on resocart (a thermosetting polymer based on phenol-formaldehyde resin, with paper as filler) substrata during the first 4-d exposure, after which it stabilised at ca 1 N. The attachment strength increased also with mussel size. Mussel adhesion on variously oriented surfaces (vertical, upper horizontal and lower horizontal) was similar. Illumination inhibited attachment strength, as expected for a photophobic species, but only after a 2-d exposure. After 6 d, no effects of light were detected. Thus, illumination seemed to influence the attachment rate, rather than the final strength. The optimum temperature for mussel attachment was 20 – 25°C. At lower and higher temperatures (5 – 15°C and 30°C), their adhesion strength decreased. The presence of conspecifics stimulated mussel attachment strength.  相似文献   
135.
Chen Liu 《Biofouling》2013,29(3):275-285
The interaction energy between bacteria and substrata with different surface energies was modelled by the extended DLVO (Derjaguin, Landau, Verwey and Overbeek) theory. The modeling results revealed that the interaction energy has a strong correlation with the CQ (Chen and Qi) ratio, which is defined as the ratio of the Lifshitz–van der Waals (LW) apolar to the electron donor surface energy components of substrata. Both modeling and experimental results with different bacteria including P. fluorescens, Cobetia marina and Vibrio alginolyticus demonstrated that if the LW surface energy of bacteria is larger than that of water, which is the case for most bacteria, the number of adhered bacteria decreases with a decreasing CQ ratio while bacterial removal rate increases with a decreasing CQ ratio. However, if the LW surface energy of bacteria is less than that of water, the opposite results are obtained. The CQ ratio gives a clear direction for the design of anti-biofouling and biofouling-release coatings through surface modification.  相似文献   
136.
Cadherins, a large family of calcium-dependent adhesion molecules, are critical for intercellular adhesion. While crystallographic structures for several cadherins show clear structural similarities, their relevant adhesive strengths vary and their mechanisms of adhesion between types I and II cadherin subfamilies are still unclear. Here, stretching of cadherins was explored experimentally by atomic force microscopy and computationally by steered molecular dynamics (SMD) simulations, where partial unfolding of the E-cadherin ectodomains was observed. The SMD simulations on strand-swapping cadherin dimers displayed similarity in binding strength, suggesting contributions of other mechanisms to explain the strength differences of cell adhesion in vivo. Systematic simulations on the unfolding of the extracellular domains of type I and II cadherins revealed diverse pathways. However, at the earliest stage, a remarkable similarity in unfolding was observed for the various type I cadherins that was distinct from that for type II cadherins. This likely correlates positively with their distinct adhesive properties, suggesting that the initial forced deformation in type I cadherins may be involved in cadherin-mediated adhesion.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:25  相似文献   
137.

Biomineralization in heterogeneous aqueous systems results from a complex association between pre-existing surfaces, bacterial cells, extracellular biomacromolecules, and neoformed precipitates. Fourier transform infrared (FTIR) spectroscopy was used in several complementary sample introduction modes (attenuated total reflectance [ATR], diffuse reflectance [DRIFT], and transmission) to investigate the processes of cell adhesion, biofilm growth, and biological Mn-oxidation by Pseudomonas putida strain GB-1. Distinct differences in the adhesive properties of GB-1 were observed upon Mn oxidation. No adhesion to the ZnSe crystal surface was observed for planktonic GB-1 cells coated with biogenic MnO x , whereas cell adhesion was extensive and a GB-1 biofilm was readily grown on ZnSe, CdTe, and Ge crystals prior to Mn-oxidation. IR peak intensity ratios reveal changes in biomolecular (carbohydrate, phosphate, and protein) composition during biologically catalyzed Mn-oxidation. In situ monitoring via ATR-FTIR of an active GB-1 biofilm and DRIFT data revealed an increase in extracellular protein (amide I and II) during Mn(II) oxidation, whereas transmission mode measurements suggest an overall increase in carbohydrate and phosphate moieties. The FTIR spectrum of biogenic Mn oxide comprises Mn-O stretching vibrations characteristic of various known Mn oxides (e.g., “acid” birnessite, romanechite, todorokite), but it is not identical to known synthetic solids, possibly because of solid-phase incorporation of biomolecular constituents. The results suggest that, when biogenic MnO x accumulates on the surfaces of planktonic cells, adhesion of the bacteria to other negatively charged surfaces is hindered via blocking of surficial proteins.  相似文献   
138.
Focal adhesion kinase (FAK) consists of an N-terminal band 4.1; ezrin, radixin, moesin (FERM) domain; tyrosine kinase domain; and C-terminal FA targeting domain. Here we show that ectopically expressed FERM is largely located in the cytosolic fraction under quiescent conditions. We further found that this ectopically expressed FERM domain aggravates endothelial cell apoptosis triggered by 100 μM resveratrol, whereas FERM had no effect on apoptosis induced by TNF-α. We determined that resveratrol at low doses (<20 μM) promotes phosphorylation (S1177) of eNOS via an AMPK-dependent pathway. The presence of the FERM domain blocked this resveratrol-stimulated eNOS phosphorylation and NO production. Thus, the pro-apoptotic activity of cytosolic FERM domain is at least partially mediated by down-regulation of NO, a critical cell survival factor. Consistently, we found that the apoptosis induced by cytosolic FERM in the presence of resveratrol was reversed by an NO donor, SNAP. In conclusion, FERM located in the cytosolic fraction plays a pivotal role in aggravating cell apoptosis through diminishing NO production.  相似文献   
139.
Though the vascular endothelial growth factor coreceptor neuropilin-1 (Nrp1) plays a critical role in vascular development, its precise function is not fully understood. We identified a group of novel binding partners of the cytoplasmic domain of Nrp1 that includes the focal adhesion regulator, Filamin A (FlnA). Endothelial cells (ECs) expressing a Nrp1 mutant devoid of the cytoplasmic domain (nrp1cytoΔ/Δ) migrated significantly slower in response to VEGF relative to the cells expressing wild-type Nrp1 (nrp1+/+ cells). The rate of FA turnover in VEGF-treated nrp1cytoΔ/Δ ECs was an order of magnitude lower in comparison to nrp1+/+ ECs, thus accounting for the slower migration rate of the nrp1cytoΔ/Δ ECs.  相似文献   
140.
The ability of cells to interact with each other and their surroundings in a co-ordinated manner depends on multiple adhesive interactions between neighbouring cells and their extracellular environment. These adhesive interactions are mediated by a family of cell surface proteins, termed cell adhesion molecules. Fortunately these adhesion molecules fall into distinct families with adhesive interactions varying in strength from strong binding involved in the maintenance of tissue architecture to more transient, less avid, dynamic interactions observed in leukocyte biology. Adhesion molecules are extremely versatile cell surface receptors which not only stick cells together but provide biochemical and physical signals that regulate a range of diverse functions, such as cell proliferation, gene expression, differentiation, apoptosis and migration. In addition, like many other cell surface molecules, they have been usurped as portals of entry for pathogens, including prions. How the mechanical and chemical messages generated from adhesion molecules are integrated with other signalling pathways (such as receptor tyrosine kinases and phosphatases) and the role that aberrant cell adhesion plays in developmental defects and disease pathology are currently very active areas of research. This review focuses on the biochemical features that define whether a cell surface molecule can act as an adhesion molecule, and discusses five specific examples of how cell adhesion molecules function as more than just 'sticky’ receptors. The discussion is confined to the signalling events mediated by members of the integrin, cadherin and immunoglobulin gene superfamilies. It is suggested that, by controlling the membrane organization of signalling receptors, by imposing spatial organization, and by regulating the local concentration of cytosolic adapter proteins, intercellular and cell-matrix adhesion is more than just glue holding cells together. Rather dynamic ‘conversations’ and the formation of multi-protein complexes between adhesion molecules, growth factor receptors and matrix macromolecules can now provide a molecular explanation for the long-observed but poorly understood requirement for a number of seemingly distinct cell surface molecules to be engaged for efficient cell function to occur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号