首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1218篇
  免费   140篇
  国内免费   230篇
  1588篇
  2024年   7篇
  2023年   22篇
  2022年   35篇
  2021年   33篇
  2020年   50篇
  2019年   62篇
  2018年   55篇
  2017年   57篇
  2016年   60篇
  2015年   44篇
  2014年   62篇
  2013年   66篇
  2012年   58篇
  2011年   54篇
  2010年   62篇
  2009年   63篇
  2008年   61篇
  2007年   66篇
  2006年   72篇
  2005年   59篇
  2004年   48篇
  2003年   55篇
  2002年   54篇
  2001年   39篇
  2000年   40篇
  1999年   31篇
  1998年   37篇
  1997年   25篇
  1996年   15篇
  1995年   23篇
  1994年   28篇
  1993年   16篇
  1992年   12篇
  1991年   18篇
  1990年   19篇
  1989年   11篇
  1988年   10篇
  1987年   4篇
  1986年   7篇
  1985年   11篇
  1984年   4篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1979年   1篇
  1978年   3篇
  1977年   4篇
  1975年   3篇
  1958年   2篇
排序方式: 共有1588条查询结果,搜索用时 15 毫秒
81.
After World War II, twenty-nine coastal Salinas (122 km2), located in the vicinity of coastal lagoons and in deltas, were exploited along the Mediterranean coastlines in South France. Today, only five of these are still actively producing salt, currently representing 175 km2. Concomitant with the abandonment of many of the smaller Salinas, the larger Salinas in the Rhône delta (Camargue) strongly increased their surfaces at the expense of natural ecosystems, of which a part has also been abandoned after 2009. This paper documents these changes in landscape use by chronological GIS mapping and describes the fate of the 91 km2 of abandoned Salina surfaces. The majority of this area (88 km2) is included in the Natura 2000 network, among which most (74 km2) has been acquired by the French coastal protection agency (Conservatoire du Littoral) to be designated as Protected Areas. Only a very minor part (<1%) has been lost for industry and harbour development. Managing abandoned Salinas as Protected Areas is a challenge, because of the different landscape, biodiversity conservation, natural and cultural heritages issues at stake. In two cases, abandoned Salinas have been brought back again into exploitation by private initiative thus allowing for the protection of original hypersaline biodiversity. In other cases, the shaping of the landscape by natural processes has been privileged. This has facilitated the spontaneous recreation of temporal Mediterranean wetlands with unique aquatic vegetation, and offered opportunities for managed coastal re-alignment and the restoration of hydrobiological exchanges between land and sea. In other areas, former salt ponds continue to be filled artificially by pumping favouring opportunities for waterfowl. This has often been combined with the creation of artificial islets to provide nesting ground for bird colonies protected from terrestrial predators.  相似文献   
82.
Aims Grasslands used for animal husbandry are chosen depending on the nutritive values of dominant herbage species. However, the influence of grazing in combination with precipitation and growing season on the nutritive values of dominant species has not been explicated.  相似文献   
83.
84.
85.
86.
Microbial eukaryotes have important roles in marine food webs, but their diversity and activities in hydrothermal vent ecosystems are poorly characterized. In this study, we analyzed microbial eukaryotic communities associated with bacterial (Beggiatoa) mats in the 2,000 m deep‐sea Guaymas Basin hydrothermal vent system using 18S rRNA gene high‐throughput sequencing of the V4 region. We detected 6,954 distinct Operational Taxonomic Units (OTUs) across various mat systems. Of the sequences that aligned with known protistan phylotypes, most were affiliated with alveolates (especially dinoflagellates and ciliates) and cercozoans. OTU richness and community structure differed among sediment habitats (e.g. different mat types and cold sediments away from mats). Additionally, full‐length 18S rRNA genes amplified and cloned from single cells revealed the identities of some of the most commonly encountered, active ciliates in this hydrothermal vent ecosystem. Observations and experiments were also conducted to demonstrate that ciliates were trophically active and ingesting fluorescent bacteria or Beggiatoa trichomes. Our work suggests that the active and diverse protistan community at the Guaymas Basin hydrothermal vent ecosystem likely consumes substantial amounts of bacterial biomass, and that the different habitats, often defined by distances of just a few 10s of cm, select for particular assemblages and levels of diversity.  相似文献   
87.
Grazing is an important modulator of both plant productivity and biodiversity in grassland community, yet how to determine a suitable grazing intensity in alpine grassland is still controversy. Here, we explore the effects of different grazing intensities on plant biomass and species composition, both at community level and functional group level, and examines the productivity–species richness relationship under four grazing patterns: no grazing (CK), light grazing (LG), moderate grazing, (MG) and heavy grazing (HG), attempt to determine a suitable grazing intensity in alpine grassland. The results were as follows. The total aboveground biomass (AGB) reduced with increasing grazing intensity, and the response of plant functional groups was different. AGB of both sedges and legumes increased from MG to HG, while the AGB of forbs reduced sharply and the grass AGB remained steady. There was a significant positive relationship between productivity and species richness both at community level and functional group level. In contrast, the belowground biomass (BGB) showed a unimodal relationship from CK to HG, peaking in MG (8,297.72 ± 621.29 g/m2). Interestingly, the grassland community tends to allocate more root biomass to the upper soil layer under increasing grazing intensities. Our results suggesting that moderate levels of disturbance may be the optimal grassland management strategy for alpine meadow in terms of root production.  相似文献   
88.
Herbivory is one of the key drivers shaping plant community dynamics. Herbivores can strongly influence plant productivity directly through defoliation and the return of nutrients in the form of dung and urine, but also indirectly by reducing the abundance of neighbouring plants and inducing changes in soil processes. However, the relative importance of these processes is poorly understood. We, therefore, established a common garden experiment to study plant responses to defoliation, dung addition, moss cover, and the soil legacy of reindeer grazing. We used an arctic tundra grazed by reindeer as our study system, and Festuca ovina, a common grazing‐tolerant grass species as the model species. The soil legacy of reindeer grazing had the strongest effect on plants, and resulted in higher growth in soils originating from previously heavily‐grazed sites. Defoliation also had a strong effect and reduced shoot and root growth and nutrient uptake. Plants did not fully compensate for the tissue lost due to defoliation, even when nutrient availability was high. In contrast, defoliation enhanced plant nitrogen concentrations. Dung addition increased plant production, nitrogen concentrations and nutrient uptake, although the effect was fairly small. Mosses also had a positive effect on aboveground plant production as long as the plants were not defoliated. The presence of a thick moss layer reduced plant growth following defoliation. This study demonstrates that grasses, even though they suffer from defoliation, can tolerate high densities of herbivores when all aspects of herbivores on ecosystems are taken into account. Our results further show that the positive effect of herbivores on plant growth via changes in soil properties is essential for plants to cope with a high grazing pressure. The strong effect of the soil legacy of reindeer grazing reveals that herbivores can have long‐lasting effects on plant productivity and ecosystem functioning after grazing has ceased.  相似文献   
89.
Large‐scale losses of seagrass areas have been associated with eutrophication events, which have led to an overproduction of photosynthetic organisms including epiphytes. Grazers that feed on epiphytes can exert a significant top–down control in the system, but the effects of physical factors on grazing activity and feeding behaviour have been rarely examined. We addressed the combination of hydrodynamic regime and seagrass shoot density can alter the feeding and foraging behaviours of mesograzers. A full factorial experiment, with flow velocity (high, medium and low) and shoot density (high versus low) as main factors, was conducted in a racetrack flume using artificial seagrass plots. The results showed that when high flow velocity conditions were combined with low shoot density, consumption of epiphytes by mesograzers was strongly reduced. In contrast, when flow velocity was low or shoot density was high, mesograzers exhibited high feeding rates and vigorous swimming behaviour. These results clearly indicate that hydrodynamic stress reduces the time that mesograzers can spend feeding, since it inhibits their swimming behaviour, and thus indirectly affecting to the density of epiphytes. Therefore, the triggering of trophic cascade effects in seagrass communities under these experimental conditions depended on the interrelationship and feedbacks among shoot density, abiotic (flow velocity) and biotic (epiphytes and mesograzers) compartments, with flow velocity exerting a top–down control on seagrass ecosystems.  相似文献   
90.
The survival of reindeer during winter, their period of greatest food stress, depends largely on the abundance and accessibility of forage in their pastures. In Northern Sweden, realized availability of forage is notably affected by snow conditions and the impacts of forestry. While these factors have been examined in isolation, their combined effect has, to the best of our knowledge to date, not been researched. In this study, vegetation surveys and analysis of snow conditions were undertaken in forest stands at various stages of recovery from clear‐cutting. The variation in abundance and growth of understory species edible by reindeer, such as lichen, was noted as forests matured. The barrier effect of ice lenses in the snow was also measured in these stands. Lichen biomass was significantly affected by a combination of stand maturity, understory vegetation height, and lichen height. Soil disturbance from the processes of felling and competition in the vegetation communities recovering from this disturbance were identified as key drivers of change in lichen biomass. Overall, clear‐cut forests had some of the greatest prevalence of ice lenses in the snow column, and forage availability at these sites was up to 61% less than in mature stands over 58 years in age. It is suggested that alternative silviculture methods are investigated for use in this reindeer herding region, as frequent clear‐cutting and consequent reduction in the average forest stand age and maturity class may be detrimental to reindeer grazing, reducing both abundance of forage, and access to it during winter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号