首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4355篇
  免费   238篇
  国内免费   338篇
  2023年   17篇
  2022年   46篇
  2021年   55篇
  2020年   46篇
  2019年   63篇
  2018年   70篇
  2017年   103篇
  2016年   119篇
  2015年   90篇
  2014年   167篇
  2013年   292篇
  2012年   132篇
  2011年   179篇
  2010年   145篇
  2009年   289篇
  2008年   303篇
  2007年   303篇
  2006年   269篇
  2005年   210篇
  2004年   203篇
  2003年   159篇
  2002年   116篇
  2001年   104篇
  2000年   102篇
  1999年   112篇
  1998年   107篇
  1997年   95篇
  1996年   96篇
  1995年   80篇
  1994年   69篇
  1993年   80篇
  1992年   66篇
  1991年   63篇
  1990年   67篇
  1989年   54篇
  1988年   46篇
  1987年   44篇
  1986年   39篇
  1985年   45篇
  1984年   45篇
  1983年   30篇
  1982年   51篇
  1981年   42篇
  1980年   38篇
  1979年   36篇
  1978年   12篇
  1977年   10篇
  1976年   6篇
  1974年   3篇
  1973年   5篇
排序方式: 共有4931条查询结果,搜索用时 578 毫秒
981.
Summary A two year comparative field water relations study was conducted in central Maryland on three sympatric temperate lianas, Lonicera japonica, Vitis vulpina and Parthenocissus quinquefolia. Seasonal physiological activity was longer by approximately 9 weeks in the evergreen L. japonica, while peak rates of stem elongation were 4–10 fold higher in the two deciduous species. There were marked differences in vascular anatomy and water use patterns among the three species, however all three evidenced varying degrees of stomatal closure in response to decreasing soil water availability and increasing atmospheric evaporative demand. The range of leaf water potentials measured in these species was quite narrow in comparison to other temperate woody species. Two of the species showed no alterations in their tissue water release properties in response to decreased soil water availability, while V. vulpina showed a limited capacity in this regard. Most significant among the species differences in water relations were the conservative water use patterns of P. quinquefolia, and the midday maxima of transpirational water loss measured in L. japonica compared to the morning peaks in traspiration for the two deciduous species. The differences found in anatomy, leaf phenology, climbing mechanics, water relations and canopy development among these three sympatric vines implies a spatial and temporal partitioning of light and water resources and emphasizes the diversity of morphological-physiological suites of characters present among species co-occurring in the same macrohabitat.  相似文献   
982.
Competitive ability is linked to rates of water extraction   总被引:1,自引:0,他引:1  
Summary The relative competitive abilities of Agropyron desertorum and Agropyron spicatum under rangeland conditions were compared using Artemisia tridentata ssp. wyomingensis transplants as indicator plants. We found A. desertorum to have substantially greater competitive ability than A. spicatum as manifested by the responses of Artemisia shrubs that were transplanted into nearly monospecific stands of these grass species. The Artemisia indicator plants had lower survival, growth, reproduction, and late-season water potential in the neighborhoods dominated by A. desertorum than in those dominated by A. spicatum. In similar, essentially monospecific grass stands, neutron probe soil moisture measurements showed that stands of A. desertorum extracted water more rapidly from the soil profile than did those of A. spicatum. These differences in extraction rates correlate clearly with the differences in indicator plant success in the respective grass stands. Nitrogen and phosphorus concentrations in Artemisia tissues suggested these nutrients were not limiting indicator plant growth and survival in the A. desertorum plots.  相似文献   
983.
Summary Canopy development and photosynthetic rate were measured at monthly intervals over a period of one year in 19 shrub and subshrub species of the Mojave and upper Sonoran Deserts. Thirteen of these species realized a substantial fraction of their total net carbon assimilation via twig photosynthesis. The twig contribution to whole plant yearly carbon gain reached a maximum of 83% in species such as Thamnosma montana, Salizaria mexicana, and Baccharis brachyphylla. This large contribution by twigs was due to both low levels of leaf production and the greater longevity of twig tissues. In some other species, however, leaf and twig organs had similar lifespans. During the year of this study (which had an unusually warm, mild winter), no species showed a pattern of winter deciduousness. The reduction in total photosynthetic area between maximal spring canopy development and mid August summer dormancy ranged from 32 to 94%. Some herbaceous perennial species died back to the ground, but none of the woody shrubs were totally without green canopy area at any time of the year. No species studied were capable of high rates of photosynthesis at low plant water potentials in July and August, but, in those species which maintained a substantial canopy area through the drought period, previously stressed tissues showed substantial recovery after fall rains. Photosynthetic rate was significantly correlated with both plant water potential and tissue nitrogen content over the entire year, but only weakly so. This is due in part to the winter months when plant water potentials and tissue nitrogen contents were high, but photosynthetic rates were often low.  相似文献   
984.
Summary The response of leaf gas exchange to environmental variables were measured at different levels of drought stress for Agropyron desertorum, a naturalized perennial bunchgrass of the semiarid shrub steppes of western North America. Leaf conductance (stomatal plus boundary layer) was more sensitive to changes in water vapor gradient than to changes in leaf temperature. Assimilation was sensitive to both temperature and vapor gradient, and also appeared to be affected by conductance and high transpiration rates. The magnitudes of both assimilation and conductance decreased with increased drought conditions. Diurnal patterns of gas exchange were measured during 3 growing seasons. For a typical spring day with moderate leaf temperature and vapor gradient, diurnal patterns were similar for plants at different levels of soil water availability. Assimilation was relatively constant during most of the day, but conductance decreased during the afternoon. Total daily carbon gain was decreased to a lesser extent than daily water loss as soil water was depleted. Consequently, the ratio of daily carbon gain to daily water loss, i.e. daily water use efficiency, increased with decreased soil water content for diurnals under spring conditions. Diurnal patterns of assimilation for a typical summer day with high leaf temperature and vapor gradient differend from those for a spring day. An afternoon decrease in assimilation was typical during a summer day. Daily carbon gain, water use, and water use efficiency for summer diurnals decreased only under severe drought conditions. Almost complete recovery of assimilation and conductance occurred if leaf microclimate was ameliorated during the afternoon of either spring or summer diurnals. Thus, conditions responsible for a midday depression in assimilation during a single day did not have persistent effects on leaf gas exchange. Daily carbon gain of a typical summer day was restricted by leaf microclimate during the afternoon, but daily water use efficiency was not relatively increased by the amelioration of leaf microclimate.  相似文献   
985.
Suboptimal nitrogen nutrition, leaf aging, and prior exposure to water stress all increased stomatal closure in excised cotton (Gossypium hirsutum L.) leaves supplied abscisic acid (ABA) through the transpiration stream. The effects of water stress and N stress were partially reversed by simultaneous application of kinetin (N6-furfurylaminopurine) with the ABA, but the effect of leaf aging was not. These enhanced responses to ABA could have resulted either from altered rates of ABA release from symplast to apoplast, or from some post-release effect involving ABA transport to, or detection by, the guard cells. Excised leaves were preloaded with [14C]ABA and subjected to overpressures in a pressure chamber to isolate apoplastic solutes in the exudate. Small quantities of 14C were released into the exudate, with the amount increasing greatly with increasing pressure. Over the range of pressures from 1 to 2.5 MPa, ABA in the exudate contained about 70% of the total 14C, and a compound co-chromatographing with phaseic acid contained over half of the remainder. At a low balancing pressure (1 MPa), release of 14C into the exudate was increased by N stress, prior water stress, and leaf aging. Kinetin did not affect 14C release in leaves of any age, N status, or water status. Distribution of ABA between pools can account in part for the effects of water stress, N stress, and leaf age on stomatal behavior, but in the cases of water stress and N stress there are additional kinetinreversible effects, presumably at the guard cells.Abbreviations and symbols ABA abscisic acid - PA phaseic acid - w water potential  相似文献   
986.
Daniel J. Cosgrove 《Planta》1988,176(1):109-116
Rapid suppression of hypocotyl elongation by blue light in cucumber (Cucumis sativus L.) was studied to examine possible hydraulic and wall changes responsible for diminished growth. Cell-sap osmotic pressure, measured by vaporpressure osmometry, was not decreased by blue light; turgor pressure, measured by the pressureprobe technique, remained constant during the growth inhibition; and stem hydraulic conductance, measured by dynamic and static methods, was likewise unaffected by blue light. Wall yielding properties were assessed by the pressure-block technique for in-vivo stress relaxation. Blue light reduced the initial rate of relaxation by 77%, but had little effect on the final amount of relaxation. The results demonstrate that blue irradiation acts to decrease the wall yielding coefficient, but not the yield threshold. Stress-strain (Instron) analysis showed that irradiation of the seedlings had little effect on the mechanical extensibilities of the isolated wall. The results indicate that blue light can reduce cell-wall loosening without affecting bulk viscoelastic properties, and indicate a chemorheological mechanism of cell-wall expansion.Abbreviations and symbols BL blue light - wall yield coefficient - Y wall yield threshold - P turgor pressure - L hydraulic conductance - g radial water-potential gradient supporting cell expansion - osmotic pressure - Pi initial chamber pressure needed to stop growth - Pf final chamber pressure needed to stop growth  相似文献   
987.
Turgor (p) and osmotic potential (s) in epidermal and mesophyll cells, in-situ xylem water potential (-xyl) and gas exchange were measured during changes of air humidity and light in leaves ofTradescantia virginiana L., Turgor of single cells was determined using the pressure probe. Sap of individual cells was collected with the probe for measuring the freezing-point depression in a nanoliter osmometer. Turgor pressure was by 0.2 to 0.4 MPa larger in mesophyll cells than in epidermal cells. A water-potential gradient, which was dependent on the rate of transpiration, was found between epidermis and mesophyll and between tip and base of the test leaf. Step changes of humidity or light resulted in changes of epidermal and mesophyll turgor (p-epi, p-mes) and could be correlated with the transpiration rate. Osmotic potential was not affected by a step change of humidity or light. For the humidity-step experiments, stomatal conductance (g) increased with increasing epidermal turgor.g/p-epi appeared to be constant over a wide range of epidermal turgor pressures. In light-step experiments this type of response was not found and stomatal conductance could increase while epidermal turgor decreased.Symbols E transpiration - g leaf conductance - w leaf/air vapour concentration difference - -epi water potential of epidermal cells - -mes water potential of mesophyll cells - -xyl water potential of xylem - p-epi turgor pressure of epidermal cells - p-mes turgor pressure of mesophyll cells - s-epi osmotic potential of epidermal cells - s-mes osmotic potential of mesophyll cells  相似文献   
988.
本文报道低温胁迫下风眼莲叶片脱落酸(ABA)、可溶性蛋白质和水势的测定结果。低温胁迫时脱落酸和可溶性蛋白质含量远高于对照,(前者含量最高可达对照的4倍,后者可达到对照的2.75倍),而且脱落酸和蛋白质含量随温度降低而升高。蛋白质的生物合成抑制剂亚胺环己酮证明,可溶性蛋白质含量升高,原因是有部分是新合成的。在各种低温处理下获得了几乎相同于对照的叶片水势。我们推测:低温胁迫下,脱落酸水平的相应变化不是由于低温诱导水分胁迫所致,而是低温胁迫本身诱导。  相似文献   
989.
借助P-V曲线,研究了油松主要水分参数(包括饱和含水时的最大渗透势φ_(?)~(sat)、初始质壁分离时的渗透势φ_(?)(tlp)、渗透水相对含量F_(tlp),和相对含水量RWC_(tlp)以及质外体水相对含量AWC)随季节和种源的变化。结果表明,油松P-V曲线主要水分参数是随生长发育阶段和环境条件的改变而发生变化的。其中φ_(?)~(sat)φ_(?)(tlP) F_(tlp),和RWC_(tlp)值在夏季生长高峰期达到最高,以后逐渐降低,到严冬季节达到一年中的最低水平,随春季来临又将升高。而AWC值表现了与此相反的季节变化趋势。油松林木主要水分参数随季节发生的变化,与林木的抗寒锻炼过程表现了很大的一致性。油松不同种源水分参数上的差异亦很明显,表现最典型的是在冬季。根据水分参数所计算的综合指标表明,在油松不同气候生态型中,抗旱性强弱的顺序是,东北型、中部型、东部型、西南型、西北型、中西型、南部型。  相似文献   
990.
de Lillis  M.  Fontanella  A. 《Plant Ecology》1992,99(1):83-96
A phenomorphological survey was carried out in central Italy to study the effects of increasing water stress on some characteristic species of the Mediterranean maquis. Nutrient content and leaf water potential were examined. The results show that three different groups exist which diverge in the modulation of growth activity. 1) Evergreen sclerophyllous species (e.g. Pistacia lentiscus, Phillyrea media, Arbutus unedo, Ruscus aculeatus), which were supposed to be drought-tolerant, in fact limited their growth activity to a brief period before aridity increased. A similar growth pattern was exhibited by those species (e.g. Quercus ilex, Erica arborea, Smilax aspera) that stopped producing new leaves and branches during the driest season and that recovered after the first rain; i.e., their growth period lasted longer. 2) Drought-deciduous species (e.g. Calicotome villosa) that adopted the drought-avoidance strategy had two vegetative periods interrupted by a phase during which they completely shed their leaves. 3) Semideciduous species (Cistus monspeliensis) with mesophitic leaves adopted an intermediate response. These grew even in the dry and cold season.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号