首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6343篇
  免费   546篇
  国内免费   408篇
  2024年   10篇
  2023年   51篇
  2022年   112篇
  2021年   126篇
  2020年   166篇
  2019年   160篇
  2018年   172篇
  2017年   176篇
  2016年   192篇
  2015年   185篇
  2014年   234篇
  2013年   332篇
  2012年   147篇
  2011年   282篇
  2010年   215篇
  2009年   376篇
  2008年   417篇
  2007年   401篇
  2006年   387篇
  2005年   299篇
  2004年   306篇
  2003年   242篇
  2002年   201篇
  2001年   157篇
  2000年   150篇
  1999年   146篇
  1998年   145篇
  1997年   119篇
  1996年   126篇
  1995年   97篇
  1994年   109篇
  1993年   95篇
  1992年   92篇
  1991年   72篇
  1990年   75篇
  1989年   73篇
  1988年   55篇
  1987年   57篇
  1986年   56篇
  1985年   82篇
  1984年   83篇
  1983年   55篇
  1982年   69篇
  1981年   60篇
  1980年   48篇
  1979年   40篇
  1978年   13篇
  1977年   12篇
  1976年   7篇
  1973年   5篇
排序方式: 共有7297条查询结果,搜索用时 15 毫秒
71.
Summary Free-proline accumulation was measured in leaves of intact wheat (Triticum vulgare L. cv. Kalyan Sona), plantago (Plantago ovata Forsk-Isabgool), papavar (Papaver somnifera L. Opium poppy) and mustard (Brassica juncea L. var. Varuna) grown in the field with low to high field water content and thus they were subjected to water stress. Leaf water deficit in percentage was used to determine the degree of stress at the time of proline anlysis.Free proline content was higher in mustard leaves as compared to wheat, plantago and papavar leaves. Water stress enhances the proline content but at same water deficit level the content differ in the leaves of the plants studied.  相似文献   
72.
Features of Crassulacean acid metabolism (CAM) were studied in a variety of different succulents in response to climatic conditions between March 1977 and October 1983 in the southern Namib desert (Richtersveld). A screening in 1977 and 1978 revealed that nearly all investigated succulents performed a CAM, but overnight accumulation of malate declined gradually with decreasing soil water potential, tissue osmotic potential, and leaf water content. This was further substantiated by an extended period of insufficient rainfall in 1979 and 1980 which damaged the evergreen CAM succulents between 80 and 100%. In most of the species still living, neither CO2-gas exchange nor diurnal acid fluctuation, indicative of CAM, could be detected unless an abundant rainfall restored both CAM features. Plants persisted in a stage of latent life.Water supply is one necessary prerequisite for CAM in the Richtersveld. But even well-watered plants with CAM were sensitive to short-term water stress caused by high water-vapour partialpressure deficit (VPD) in the night, which reduced or prevented CO2 uptake and resulted in a linear relation between overnight accumulated malate and VPD. The results do not support the opinion that, for the Namib succulents, CAM is an adaptive mechanism to water stress since long-term and short-term water stress stopped nocturnal malate synthesis, but instead lead to the conclusion that nocuturnal CO2 fixation is only performed when the water status of the plant can be improved simultaneously.Abbreviations CAM Crassulacean acid metabolism - VPD water vapour pressure deficit Dedicated to Professor H. Ziegler on the occasion of his 60th birthday  相似文献   
73.
E. Steudle  J. S. Boyer 《Planta》1985,164(2):189-200
Hydraulic resistances to water flow have been determined in the cortex of hypocotyls of growing seedlings of soybean (Glycine max L. Merr. cv. Wayne). Data at the cell level (hydraulic conductivity, Lp; half-time of water exchange, T 1/2; elastic modulus, ; diffusivity for the cell-to-cell pathway, D c) were obtained by the pressure probe, diffusivities for the tissue (D t) by sorption experiments and the hydraulic conductivity of the entire cortex (Lpr) by a new pressure-perfusion technique. For cortical cells in the elongating and mature regions of the hypocotyls T 1/2=0.4–15.1 s, Lp=0.2·10-5–10.0·10-5 cm s-1 bar-1 and D c=0.1·10-6–5.5·10-6 cm2 s-1. Sorption kinetics yielded a tissue diffusivity D t=0.2·10-6–0.8·10-6 cm2 s-1. The sorption kinetics include both cell-wall and cell-to-cell pathways for water transport. By comparing D c and D t, it was concluded that during swelling or shrinking of the tissue and during growth a substantial amount of water moves from cell to cell. The pressure-perfusion technique imposed hydrostatic gradients across the cortex either by manipulating the hydrostatic pressure in the xylem of hypocotyl segments or by forcing water from outside into the xylem. In segments with intact cuticle, the hydraulic conductance of the radial path (Lpr) was a function of the rate of water flow and also of flow direction. In segments without cuticle, Lpr was large (Lpr=2·10-5–20·10-5 cm s-1 bar-1) and exceeded the corticla cell Lp. The results of the pressure-perfusion experiments are not compatible with a cell-to-cell transport and can only the explained by a preferred apoplasmic water movement. A tentative explanation for the differences found in the different types of experiments is that during hydrostatic perfusion the apoplasmic path dominates because of the high hydraulic conductivity of the cell wall or a preferred water movement by film flow in the intercellular space system. For shrinking and swelling experiments and during growth, the films are small and the cell-to-cell path dominates. This could lead to larger gradients in water potential in the tissue than expected from Lpr. It is suggested that the reason for the preference of the cell-to-cell path during swelling and growth is that the solute contribution to the driving force in the apoplast is small, and tensions normally present in the wall prevent sufficiently thick water films from forming. The solute contribution is not very effective because the reflection coefficient of the cell-wall material should be very small for small solutes. The results demonstrate that in plant tissues the relative magnitude of cell-wall versus cell-to-cell transport could dependent on the physical nature of the driving forces (hydrostatic, osmotic) involved.Abbreviations and symbols D c diffusivity of the cell-to-cell pathway - D t diffusivity of the tissue - radial flow rate per cm2 of segment surface - Lp hydraulic conductivity of plasma-membrane - Lpr radial hydraulic conductance of the cortex - T 1/2 half-time of water exchange between cell and surroundings - volumetric elastic modulus  相似文献   
74.
A new guillotine thermocouple psychrometer was used to make continuous measurements of water potential before and after the excision of elongating and mature regions of darkgrown soybean (Glycine max L. Merr.) stems. Transpiration could not occur, but growth took place during the measurement if the tissue was intact. Tests showed that the instrument measured the average water potential of the sampled tissue and responded rapidly to changes in water potential. By measuring tissue osmotic potential ( s ), turgor pressure ( p ) could be calculated. In the intact plant, s and p were essentially constant for the entire 22 h measurement, but s was lower and p higher in the elongating region than in the mature region. This caused the water potential in the elongating region to be lower than in the mature region. The mature tissue equilibrated with the water potential of the xylem. Therefore, the difference in water potential between mature and elongating tissue represented a difference between the xylem and the elongating region, reflecting a water potential gradient from the xylem to the epidermis that was involved in supplying water for elongation. When mature tissue was excised with the guillotine, s and p did not change. However, when elongating tissue was excised, water was absorbed from the xylem, whose water potential decreased. This collapsed the gradient and prevented further water uptake. Tissue p then decreased rapidly (5 min) by about 0.1 MPa in the elongating tissue. The p decreased because the cell walls relaxed as extension, caused by p , continued briefly without water uptake. The p decreased until the minimum for wall extension (Y) was reached, whereupon elongation ceased. This was followed by a slow further decrease in Y but no additional elongation. In elongating tissue excised with mature tissue attached, there was almost no effect on water potential or p for several hours. Nevertheless, growth was reduced immediately and continued at a decreasing rate. In this case, the mature tissue supplied water to the elongating tissue and the cell walls did not relax. Based on these measurements, a theory is presented for simultaneously evaluating the effects of water supply and water demand associated with growth. Because wall relaxation measured with the psychrometer provided a new method for determining Y and wall extensibility, all the factors required by the theory could be evaluated for the first time in a single sample. The analysis showed that water uptake and wall extension co-limited elongation in soybean stems under our conditions. This co-limitation explains why elongation responded immediately to a decrease in the water potential of the xylem and why excision with attached mature tissue caused an immediate decrease in growth rate without an immediate change in p Abbreviations and symbols L tissue conductance for water - m wall extensibility - Y average yield threshold (MPa) - o water potential of the xylem - p turgor pressure - s osmotic potential - w water potential of the elon gating tissue  相似文献   
75.
H C Lin  S P Lei  G Wilcox 《Gene》1985,34(1):111-122
Hybrid plasmids containing the araBAD operon of Salmonella typhimurium LT2 were characterized by Southern blot and genetic analyses. The nucleotide sequence of araB was determined. The araB gene product, ribulokinase (EC 2.7.1.16), was purified and the results of amino acid composition analysis and partial amino acid sequence are in agreement with predictions from the DNA sequence. Ribulokinase is 569 amino acid residues long and has a calculated Mr of 61 793. Ribulokinase shares significant homology with xylulose kinase from Escherichia coli. Codon usage in the araB gene does not favor those codons which have intermediate codon-anticodon binding energy.  相似文献   
76.
77.
Nonrandom insertion of Tn5 into cloned human adenovirus DNA   总被引:4,自引:0,他引:4  
  相似文献   
78.
In a survey of eight lake systems located in north-central Florida, total zooplankton abundance showed a strong positive correlation (r2=0.87, a=0.01) with trophic state. Zooplankton abundance averaged 1.0 × 105 organisms · m–2 in oligotrophic systems and up to 8.2 × 105 organisms · m–2 in the eutrophic systems. Seasonal variations in total abundance were greatest in the eutrophic lakes where rotifers dominated and periodically produced sharp population peaks (approaching 2.0 × 106· m–2). In contrast, the more oligotrophic systems had relatively stable levels of total abundance and were dominated by copepods. Diversities of the major taxa in the lakes were variable with one to three species of copepods, zero to four species of cladocera, and two to seven species of rotifers dominant at any one time. Planktonic cladoceran communities were often composed of only one or two species. Low cladocera diversity in these subtropical systems was suggestive of increased predation pressure on this group of crustaceans. A comparison of the total crustacean abundance in the Florida systems to those of some of the Great Lakes indicated that lower standing crops of crustacean zooplankton in the Florida lakes may be a response to both predation and temperature.Contribution Number 043, Marine Science Programs Laboratory, Dauphin Island, Alabama, U.S.A.Contribution Number 043, Marine Science Programs Laboratory, Dauphin Island, Alabama, U.S.A.  相似文献   
79.
Four species of heath, occurring in the heathlands of Brittany, are compared regarding their water relations: Calluna vulgaris, Erica ciliaris, E. cinerea and E. tetralix. E. cinerea is unable to establish itself in wet heathland because of its intolerance of prolonged waterlogging. It is the Erica species best adapted to dry habitat conditions in Brittany. E. ciliaris canot establish itself in dry heathland and is less tolerant of waterlogging than E. tetralix. E. tetralix is the species best adapted to wet heathland, being tolerant of waterlogging, but can also establish itself in dry heathland. Of the three E. species it has the widest ecological range. Calluna is tolerant of both wet and dry conditions and has a wide ecological range. E. cinerea is typical of dry- and E. tetralix of wet heathland. Although both species did best in moist aerated soil in experimental cultures, neither is abundant in mesophilic heaths where E. ciliaris is dominant. One explanation may be competition for aerial space. E. cinerea and E. tetralix both have an upright growth, whereas E. ciliaris rapidly adopts a straggling bushy habit, with long rooting branches. E. ciliaris thus establishes large interpenetrating clumps. With increasing dryness E. ciliaris disappears and may be replaced by E. cinerea and, with increasing wetness and especially waterlogging, E. tetralix will take over.  相似文献   
80.
Summary Phytase production byAspergillus ficuum was studied using solid state cultivation on several cereal grains and legume seeds. The microbial phytase was used to hydrolyze the phytate in soybean meal and cotton seed meal. Wheat bran, soybean meal, cottonseed meal and corn meal supported good fungal growth and yielded a high level of phytase when an adequate amount of moisture was present. The level of phytase production on solid substrate was higher than that obtained by submerged liquid fermentation. Higher levels of phosphorus (more than 10 mg Pi/100 g substrate) in the growth medium (static culture) inhibited phytase synthesis, and the degree of phosphorus inhibition was less apparent in semisolid medium than in liquid medium. A static cultivation on semisolid substrate produced a higher level of phytase (2-20-fold) than that obtained by agitated cultivation. The minimal amount of water required for growth and enzyme production on those substrates was about 15%, while the optimum level for phytase production was between 25 and 35% and that for cell growth was above 50%. Optimum pH for phytase production was between 4 and 6.A ficuum grew well on raw (unheated) substrate containing a minimal amount of water and produced as much phytase as on heated substrate. About half of the phytic acid in soybean meal and cottonseed meal was hydrolyzed by treatment withA. ficuum phytase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号